Uneingeschränkter Zugang

Practical Aspects of Using Modern Laser Scanning Techniques for Measuring Mine Excavations


Zitieren

Bieniasz, J., Wojnar, W., Sadowski, A. & Wrzosek, J. (2011). Convergence of large depth mining excavations in salt rock formations. Geologia, 37/2, 207–214. BieniaszJ. WojnarW. SadowskiA. WrzosekJ. 2011 Convergence of large depth mining excavations in salt rock formations Geologia 37/2 207 214 Search in Google Scholar

Chen, S., Walske, M. & Davies, I. (2018). Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28–35. ChenS. WalskeM. DaviesI. 2018 Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation International Journal of Rock Mechanics and Mining Sciences 110 28 35 Search in Google Scholar

Chena, S., Walskeb, M.L. & Daviesc, I.J. (2018), Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28–35. ChenaS. WalskebM.L. DaviescI.J. 2018 Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation International Journal of Rock Mechanics and Mining Sciences 110 28 35 Search in Google Scholar

Diaz, V., van Oosterom, P., Meiijers, M., Verbree, E., Ahmed, N. & van Lankveld, T. (2024). Comparison of Cloud-to-Cloud Distance Calculation Methods - Is the Most Complex Always the Most Suitable? Recent Advances in 3D Geoinformation Science, 329–334 DiazV. van OosteromP. MeiijersM. VerbreeE. AhmedN. van LankveldT. 2024 Comparison of Cloud-to-Cloud Distance Calculation Methods - Is the Most Complex Always the Most Suitable? Recent Advances in 3D Geoinformation Science 329 334 Search in Google Scholar

Fan, L., Smethurst, J., Atkinson, P. & Powrie, W. (2015). Error in target-based georeferencing and registration in terrestrial laser scanning. Computers & Geosciences, 83, 54–64. FanL. SmethurstJ. AtkinsonP. PowrieW. 2015 Error in target-based georeferencing and registration in terrestrial laser scanning Computers & Geosciences 83 54 64 Search in Google Scholar

Ge, Y., Tang, H., Xia, D., Wang, L., Zhao, B., Teaway, J.W., Chen, H. & Zhou, T. (2018). Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm. Engineering Geology, 242, 44–54. GeY. TangH. XiaD. WangL. ZhaoB. TeawayJ.W. ChenH. ZhouT. 2018 Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm Engineering Geology 242 44 54 Search in Google Scholar

Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J-L. & Jaboyedoff, M. (2015). Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. European Journal of Remote Sensing, 48, 541–568. HumairF. AbellanA. CarreaD. MatasciB. EpardJ-L. JaboyedoffM. 2015 Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains European Journal of Remote Sensing 48 541 568 Search in Google Scholar

Janus, J. & Krawczyk, J. (2021). Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies. 14(16):4894. JanusJ. KrawczykJ. 2021 Measurement and Simulation of Flow in a Section of a Mine Gallery Energies 14 16 4894 Search in Google Scholar

Jones, E. (2020). Mobile LiDAR for underground geomechanics: learnings from the teens and directions for the twenties. Second International Conference on Underground Mining Technology (pages 3–26). Crawley, Australia: Australian Centre for Geomechanics. JonesE. 2020 Mobile LiDAR for underground geomechanics: learnings from the teens and directions for the twenties Second International Conference on Underground Mining Technology 3 26 Crawley, Australia Australian Centre for Geomechanics Search in Google Scholar

Kajzar, V., Kukutsch, R. & Heroldova, N. (2015). Verifying the possibilities of using a 3D laser scanner in the mining underground. Acta Geodynamica et Geomaterialia, 12, 1 (177), 51–58. KajzarV. KukutschR. HeroldovaN. 2015 Verifying the possibilities of using a 3D laser scanner in the mining underground Acta Geodynamica et Geomaterialia, 12 1 177 51 58 Search in Google Scholar

Kukutsch, R., Kajzar, V., Konicek, P., Waclawik P. & Ptacek J. (2015). Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of Sustainable Mining, 14, 30–37. KukutschR. KajzarV. KonicekP. WaclawikP. PtacekJ. 2015 Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner Journal of Sustainable Mining 14 30 37 Search in Google Scholar

Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, page 278. KrawczykA. 2023 Mining Geomatics ISPRS International Journal of Geo-Information 278 Search in Google Scholar

Lai, P. & Samson, C. (2016), Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels. Tunnelling and Underground Space Technology, 58, 109–119. LaiP. SamsonC. 2016 Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels Tunnelling and Underground Space Technology 58 109 119 Search in Google Scholar

Leica TS16 Total Station User manual. (2024). Access: http://surveyteq.com/uploads/p_4728DC68-531B-1855-1437-C5BD241629A2-1608810446.pdf Leica TS16 Total Station User manual 2024 Access: http://surveyteq.com/uploads/p_4728DC68-531B-1855-1437-C5BD241629A2-1608810446.pdf Search in Google Scholar

Lipecki, T. & Jaśkowski, W. (2009). Application of laser scanners to determine the shape of mine excavations for safety assessment, using the example of the cross-cut Mina in the Salt Mine Wieliczka. Reports on Geodesy, 2/87, 239–250. LipeckiT. JaśkowskiW. 2009 Application of laser scanners to determine the shape of mine excavations for safety assessment, using the example of the cross-cut Mina in the Salt Mine Wieliczka Reports on Geodesy 2/87 239 250 Search in Google Scholar

Lipecki, T., Jaśkowski, W., Gruszyński, W., Matwij, K., Matwij, W. & Ulmaniec, P. (2015). Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine. Acta Geoldaetica et Geophysica, Volume 51, pages 257–272. LipeckiT. JaśkowskiW. GruszyńskiW. MatwijK. MatwijW. UlmaniecP. 2015 Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine Acta Geoldaetica et Geophysica 51 257 272 Search in Google Scholar

Liu, X., Zhang, X., Wang, L., Qu, F., Shao, A., Zhao, L., Wang, H., Yue, X., Li, Y., Yan, W. & He, J. (2024). Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green and Smart Mining Engineering, In Press. LiuX. ZhangX. WangL. QuF. ShaoA. ZhaoL. WangH. YueX. LiY. YanW. HeJ. 2024 Research progress and prospects of intelligent technology in underground mining of hard rock mines Green and Smart Mining Engineering In Press. Search in Google Scholar

Mah, J., Samson, C., McKinnon, S.D. & Thibodeau, D. (2013). 3D laser imaging for surface roughness analysis. International Journal of Rock Mechanics and Mining Sciences, 58, 111–117. MahJ. SamsonC. McKinnonS.D. ThibodeauD. 2013 3D laser imaging for surface roughness analysis International Journal of Rock Mechanics and Mining Sciences 58 111 117 Search in Google Scholar

Moon, D., Chung, S., Kwon, S., Seo, J. & Shin, J. (2019). Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322–331. MoonD. ChungS. KwonS. SeoJ. ShinJ. 2019 Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning Automation in Construction 98 322 331 Search in Google Scholar

Mukupa, W., Roberts, G.W., Hancock, C.M. & Al-Manasir, K. (2017). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49:353, 99–116. MukupaW. RobertsG.W. HancockC.M. Al-ManasirK. 2017 A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures Survey Review 49 353 99 116 Search in Google Scholar

Nghia, N. V., Long, N. Q., Cuc, N. T. & Bui, X.-N. (2019). Applied Terrestrial Laser Scanning for coal mine high definition mapping. World of Mining - Surface and Underground, 71(4), 237–242. NghiaN. V. LongN. Q. CucN. T. BuiX.-N. 2019 Applied Terrestrial Laser Scanning for coal mine high definition mapping World of Mining - Surface and Underground 71 4 237 242 Search in Google Scholar

Piestrzyński, A., Banaszak, A. & Zalewska-Kuczmierczyk, M. (2007). Sól kamienna na obszarze przedsudeckim. Chapter in: Monografia KGHM. Lubin: KGHM CUPRUM Sp. z o.o. CBR. PiestrzyńskiA. BanaszakA. Zalewska-KuczmierczykM. 2007 Sól kamienna na obszarze przedsudeckim Chapter in: Monografia KGHM Lubin KGHM CUPRUM Sp. z o.o. CBR Search in Google Scholar

Singh, S. K., Banerjee, B. P. & Raval, S. (2021). Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines. Remote Sensing, 13(16):3145. SinghS. K. BanerjeeB. P. RavalS. 2021 Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines Remote Sensing 13 16 3145 Search in Google Scholar

Singh, S.K., Banerjee, B.P. & Raval, S. (2023). A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology. 33, 133–154. SinghS.K. BanerjeeB.P. RavalS. 2023 A review of laser scanning for geological and geotechnical applications in underground mining International Journal of Mining Science and Technology 33 133 154 Search in Google Scholar

Technical specification sheet for Faro FOCUS S 350. (2024). Access: https://knowledge.faro.com/Hardware/Focus/Focus/Technical_Specification_Sheet_for_the_Focus_Laser_Scanner Technical specification sheet for Faro FOCUS S 350 2024 Access: https://knowledge.faro.com/Hardware/Focus/Focus/Technical_Specification_Sheet_for_the_Focus_Laser_Scanner Search in Google Scholar

Technical specification sheet for LeicaFlexLine TS09plus Total Station. (2024). Access: https://www.sccssurvey.co.uk/leica-flexline-ts09plus-total-station.html Technical specification sheet for LeicaFlexLine TS09plus Total Station 2024 Access: https://www.sccssurvey.co.uk/leica-flexline-ts09plus-total-station.html Search in Google Scholar

Watson, C. & Marshall, J. (2018). Estimating underground mine ventilation friction factors from low density 3D data acquired by a moving LiDAR. International Journal of Mining Science and Technology, 28, 657–662. WatsonC. MarshallJ. 2018 Estimating underground mine ventilation friction factors from low density 3D data acquired by a moving LiDAR International Journal of Mining Science and Technology 28 657 662 Search in Google Scholar

Zeb Horizon - User manual. (2020). Access: https://geoslam.com/wp-content/uploads/2021/02/ZEB-Horizon-User-Manual-v1.3.pdf Zeb Horizon - User manual 2020 Access: https://geoslam.com/wp-content/uploads/2021/02/ZEB-Horizon-User-Manual-v1.3.pdf Search in Google Scholar

eISSN:
2083-831X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik