1. bookVolumen 71 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2509-8934
Erstveröffentlichung
22 Feb 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Genome survey sequencing of Ailanthus altissima and identification of simple sequence repeat (SSR) markers

Online veröffentlicht: 08 Aug 2022
Volumen & Heft: Volumen 71 (2022) - Heft 1 (January 2022)
Seitenbereich: 47 - 53
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2509-8934
Erstveröffentlichung
22 Feb 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

Ailanthus altissima is a deciduous tree native to China and introduced to other parts of the world as an ornamental plant. It exhibits resistance to both abiotic and biotic stress factors and has various pharmacological effects and strong allelopathy, generating significant research interests. However, the genome sequence of this species has not been reported, limiting its research development. The purpose of the study was to determine the genome size and characteristics of A. altissima to conduct its genomic survey. Next-generation sequencing and K-mer analysis were employed to measure the genome size of A. altissima. Overall, a total of 61.93 Gb high-quality clean data were acquired, representing approximately 64.09× coverage of the A. altissima genome. The genomic characteristics of A. altissima include a genome size of 966.38 Mbp, a heterozygosis rate of 0.78 %, and a repeat rate of 41.22 %. A total of 735,179 genomic SSRs markers were identified based on genome survey sequences. Alignment analysis showed that A. altissima was closely related to Citrus sinensis and Leitneria florida-na. This study provides basic information for future whole-genomic sequencing of A. altissima. This will facilitate a knowledge of the population structure, genetic diversity, long distance-gene transfer, and pollen-based gene flow analyses of A. altissima populations from its known distribution ranges in China, focusing on planted and natural forest stands.

Abdallah M, Mahgoub A, Ahmed H, Chaterji S (2019) Athena: Automated tuning of k-mer based Genomic error correction Algorithms using Language Models. Scientific reports 9(1): 1-13. https://doi.org/10.1038/s41598-019-52196-4. Search in Google Scholar

Aird D, Ross MG, Chen W, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome biology 12(2): 1-14. https://doi.org/10.1186/gb-2011-12-2-r18. Search in Google Scholar

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215(3): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2. Search in Google Scholar

An J, Yin M, Zhang Q, Gong D, Jia X, Guan Y, Hu J (2017) Genome survey sequencing of Luffa cylindrica L. and microsatellite high resolution melting (SSR-HRM) analysis for genetic relationship of Luffa genotypes. International Journal of Molecular Sciences 18(9): 1942. https://doi.org/10.3390/ijms18091942.561859128891982 Search in Google Scholar

Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16): 2583-2585. https://doi.org/10.1093/bioinformatics/btx198.587070128398459 Search in Google Scholar

Bhattarai G, Shi A, Kandel DR, Solís-Gracia N, da Silva JA, Avila CA (2021) Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Scientific Reports 11(1): 1-16. https://doi.org/10.1038/s41598-021-89473-0.811357133976335 Search in Google Scholar

Chen C, Xu M, Wang C, Qiao G, Wang W, Tan Z, Wu T, Zhang Z (2017) Characterization of the Lycium barbarum fruit transcriptome and development of ESTSSR markers. PloS one 12(11): e0187738. https://doi.org/10.1371/journal.pone.0187738.569527929125846 Search in Google Scholar

Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo M-J, Dupont CL, Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nature bio-technology 29(10): 915-921. https://doi.org/10.1038/nbt.1966.355828121926975 Search in Google Scholar

Dallas JF, Leitch MJ, Hulme PE (2005) Microsatellites for tree of heaven (Ailanthus altissima). Molecular Ecology Notes 5(2): 340-342. https://doi.org/10.1111/j.1471-8286.2005.00920.x. Search in Google Scholar

De Feo V, De Martino L, Quaranta E, Pizza C (2003) Isolation of phytotoxic compounds from tree-of-heaven (Ailanthus altissima Swingle). Journal of Agricultural and Food Chemistry 51(5): 1177-1180. https://doi.org/10.1021/jf020686+.10.1021/jf020686+12590453 Search in Google Scholar

De Martino L, De Feo V (2008) Chemistry and biological activities of Ailanthus altissima swingle: A review. Pharmacognosy Reviews 2(4): 339. https://doi.org/www.phcogrev.com. Search in Google Scholar

Delsuc F, Tilak M (2015) Naked but not hairless: the pitfalls of analyses of molecular adaptation based on few genome sequence comparisons. Genome biology and evolution 7(3): 768-774. https://doi.org/10.1093/gbe/evv036.532255125714745 Search in Google Scholar

Fontana C, Angeletti S, Mirandola W, Cella E, Alessia L, Zehender G, Favaro M, Leoni D, Rose DD, Gherardi G (2020) Whole genome sequencing of carbapenem-resistant Klebsiella pneumoniae: evolutionary analysis for outbreak investigation. Future Microbiology 15(3): 203-212. https://doi.org/10.2217/fmb-2019-0074.32056447 Search in Google Scholar

Jiao Y, Jia H, Li X, Chai M, Jia H, Chen Z, Wang G, Chai C, van de Weg E, Gao Z (2012) Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC genomics 13(1): 201. https://doi.org/10.1186/1471-2164-13-201.350517422621340 Search in Google Scholar

Kim HM, Kim SJ, Kim H, Ryu B, Kwak H, Hur J, Choi J, Jang DS (2015) Constituents of the stem barks of Ailanthus altissima and their potential to inhibit LPS-induced nitric oxide production. Bioorganic & medicinal chemistry letters 25(5): 1017-1020. https://doi.org/10.1016/j.bmcl.2015.01.034.25666824 Search in Google Scholar

Kowarik I, Säumel I (2007) Biological flora of central Europe: Ailanthus altissima (Mill.) swingle. Perspectives in Plant Ecology, Evolution and Systematics 8(4): 207-237. https://doi.org/10.1016/j.ppees.2007.03.002. Search in Google Scholar

Kweon OJ, Lim YK, Kim HR, Kim T, Ha S, Lee M (2020) Isolation of a novel species in the genus Cupriavidus from a patient with sepsis using whole genome sequencing. Plos one 15(5): e0232850. https://doi.org/10.1371/journal.pone.0232850.721975132401765 Search in Google Scholar

Li G, Song L, Jin C, Li M, Gong S, Wang Y (2019) Genome survey and SSR analysis of Apocynum venetum. Bioscience reports 39(6). https://doi.org/10.1042/BSR20190146.659156431189745 Search in Google Scholar

Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5): 713-714. https://doi.org/10.1093/bioinformatics/btn025.18227114 Search in Google Scholar

Liao Y, Guo Y, Chen J, Wang Q (2014) Phylogeography of the widespread plant Ailanthus altissima (Simaroubaceae) in China indicated by three chloroplast DNA regions. Journal of Systematics and Evolution 52(2): 175-185. https://doi.org/10.1111/jse.12065. Search in Google Scholar

Lin H, Hsu W (2020) GSAlign: an efficient sequence alignment tool for intra-species genomes. BMC genomics 21(1): 1-10. https://doi.org/10.1186/s12864-020-6569-1.704110132093618 Search in Google Scholar

Lincoln JM (2012). Effects of Ailanthus altissima Soil Leachates on Nodulation and Expression of Two Genes that Regulate Nodulation of Trifolium pratense. Masters Masters thesis, Grand Valley State University. Search in Google Scholar

Liu Y, Tang Q, Cheng P, Zhu M, Zhang H, Liu J, Zuo M, Huang C, Wu C, Sun Z (2020) Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharmaceutica Sinica B 10(2): 374-382. https://doi.org/10.1016/j.apsb.2019.08.004.701629032082980 Search in Google Scholar

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAP-denovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1): 2047-2217X-2041-2018. https://doi.org/10.1186/2047-217X-1-18.362652923587118 Search in Google Scholar

Motalebipour EZ, Kafkas S, Khodaeiaminjan M, Çoban N, Gözel H (2016) Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: development of novel SSR markers and genetic diversity in Pistacia species. BMC genomics 17(1): 998. https://doi.org/10.1186/s12864-016-3359-x.514217427923352 Search in Google Scholar

Neophytou C, Pötzelsberger E, Curto M, Meimberg H, Hasenauer H (2020) Population bottlenecks have shaped the genetic variation of Ailanthus altissima (Mill.) Swingle in an area of early introduction. Forestry: An International Journal of Forest Research 93(4): 495-504. https://doi.org/10.1093/forestry/cpz019. Search in Google Scholar

Neophytou C, Torutaeva E, Winter S, Meimberg H, Hasenauer H, Curto M (2018) Analysis of microsatellite loci in tree of heaven (Ailanthus altissima (Mill.) Swingle) using SSR-GBS. Tree Genetics & Genomes 14(6): 1-12. https://doi.org/10.1007/s11295-018-1295-4. Search in Google Scholar

Nouws S, Bogaerts B, Verhaegen B, Denayer S, Piérard D, Marchal K, Roosens N H, Vanneste K, De Keersmaecker SC (2020) Impact of DNA extraction on Whole Genome Sequencing analysis for characterization and relatedness of Shiga toxin-producing Escherichia coli isolates. Scientific Reports 10(1): 1-16. https://doi.org/10.1038/s41598-020-71207-3.747406532887913 Search in Google Scholar

Rashed K, Slowing K, Said A, Cueto M (2012) Analgesic, antipyretic and antiulcer activities of Ailanthus altissima (Mill.) Swingle. Phytopharmacology 3(2): 341-350. Search in Google Scholar

Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, Shirsekar G, Weigel D (2020) Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. The ISME Journal: 1-15. https://doi.org/10.1038/s41396-020-0665-8.736805132405027 Search in Google Scholar

Sadeghi SMM, Van Stan II JT, Pypker TG, Friesen J (2017) Canopy hydrometeoro-logical dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agricultural and Forest Meteorology 240: 10-17. https://doi.org/10.1016/j.agrformet.2017.03.017. Search in Google Scholar

Saina JK, Li Z, Gichira AW, Liao Y (2018) The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (mill.)(sapindales: Simaroubaceae), an important pantropical tree. International journal of molecular sciences 19(4): 929. https://doi.org/10.3390/ijms19040929.597936329561773 Search in Google Scholar

Shahraki A, Yu Y, Gul ZM, Liang C, Iyison NB (2020) Whole genome sequencing of Thaumetopoea pityocampa revealed putative pesticide targets. Genomics 112(6): 4203-4207. https://doi.org/10.1016/j.ygeno.2020.07.017.32652101 Search in Google Scholar

Trifilo P, Raimondo F, Nardini A, Lo Gullo M, Salleo S (2004) Drought resistance of Ailanthus altissima: root hydraulics and water relations. Tree physiology 24(1): 107-114. https://doi.org/10.1093/treephys/24.1.107.14652220 Search in Google Scholar

Wang R, Fan J, Chang P, Zhu L, Zhao M, Li L (2019) Genome survey sequencing of acer truncatum bunge to identify genomic information, simple sequence repeat (ssr) markers and complete chloroplast genome. Forests 10(2): 87. https://doi.org/10.3390/f10020087. Search in Google Scholar

Wei X, Wang L, Zhang Y, Qi X, Wang X, Ding X, Zhang J, Zhang X (2014) Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules 19(4): 5150-5162. https://doi.org/10.3390/molecules19045150.627069424759074 Search in Google Scholar

Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature genetics 48(8): 927. https://doi.org/10.1038/ng.3596.27322545 Search in Google Scholar

Yu F, Song J, Liang J, Wang S, Lu J (2020) Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 112(1): 603-614. https://doi.org/10.1016/j.ygeno.2019.04.012.31004699 Search in Google Scholar

Zheng Y, He ZK, Yao MJ, Guo YD, Chen XR, Tu MW, Hong ZY, Li C (2020) Genome survey study of Alpinia katsumadai based on Illumina high throughput sequencing. Chinese Traditional and Herbal Drugs 51(13): 3530-3534. Search in Google Scholar

Zhou W, Hu Y, Sui Z, Fu F, Wang J, Chang L, Guo W, Li B (2013) Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing. PLoS One 8(7): e69909. https://doi.org/10.1371/journal.pone.0069909.371306423875008 Search in Google Scholar

Zhou X, Liu M, Lu X, Sun S, Cheng Y, Ya H (2020) Genome survey sequencing and identification of genomic SSR markers for Rhododendron micranthum. Bioscience reports 40(6). https://doi.org/10.1042/bsr20200988730335232495827 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo