1. bookVolumen 71 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2509-8934
Erstveröffentlichung
22 Feb 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Estimating of Additive, Dominance, and Epistatic Genetic Variance in Eucalypt Hybrid Population

Online veröffentlicht: 07 Jul 2022
Volumen & Heft: Volumen 71 (2022) - Heft 1 (January 2022)
Seitenbereich: 39 - 46
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2509-8934
Erstveröffentlichung
22 Feb 2016
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

Additive, dominance and epistasis genetic variances were estimated from analysis of a clonally replicated full-sib progeny test grown in the Republic of Congo. Phenotypic variance components were estimated for ages 4 through 25 months for growth and at ages 8 and 18 months for ecophysiological traits. The estimation of genetics effects was derived from the individual mixed model. Genetic structure was incorporated into variances and covariance’s effects based on markers information. The detected genetic effects of epistasis are significant in some traits. This study shows that epistasis variance can be non-zero and contribute significantly to the genetic variability of growth and ecophysiological traits. We conclude that the epistatic effect for quantitative traits may exist, but estimates may not be obtained, either because the models used are inappropriate or because the epistasis variance is too small relative to other components of the genetic variance to be estimated.

An P, Mukherjee O, Chanda P, Yao L, Engelman CD, Huang CH, Zheng T, Kovac LP, Dubé MP, Liang X, Li J, de Andrade M, Culverhouse R, Malzahn D, Manning AK, Clarke GM, Jung J, Province MA (2009) The Challenge of Detecting Epistasis (G×G Interactions): Genetic Analysis Workshop 16. Genetic Epidemiology 33 (01): 58–67. https://doi.org/10.1002/gepi.20474 Search in Google Scholar

Barker SF (1979) Interlocus interactions: a review of experimental evidence. Theoretical Population Biology 16: 323-346. https://doi.org/10.1016/0040-5809(79)90021-2 Search in Google Scholar

Barton NH (2017) How does epistasis influence the response to selection? Heredity 118: 96–109. https://doi.org/10.1038/hdy.2016.109517611427901509 Search in Google Scholar

Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity https://doi.org/10.1038/s41437-020-0312-1778468532296132 Search in Google Scholar

Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Science 47:1082–1090. https://doi.org/10.2135/cropsci2006.11.0690 Search in Google Scholar

Bouvet J-M, Saya A, Vigneron Ph (2009) Trends in additive, dominance and environmental effects with age for growth traits in Eucalyptus hybrid populations. Euphytica 165: 35-54. https://doi.org/10.1007/s10681-008-9746-x Search in Google Scholar

Bouvet J-M, Makouanzi G, Cros D, Vigneron Ph (2016) Modelling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accurary implications. Heredity 116: 146-157. https://doi.org/10.1038/hdy.2015.78480688126328760 Search in Google Scholar

Carlborg Ö, Haley CS (2004) Epistasis; too often neglected in complex trait studies. Nature Reviews Genetics 5: 618-625. https://doi.org/10.1038/nrg140715266344 Search in Google Scholar

Cheverud JM, Routman EJ (1995) Epistasis and its Contribution to Genetic Variance Components. Genetics 139: 1455-1461. https://doi.org/10.1093/genetics/139.3.145512064717768453 Search in Google Scholar

Cheverud JM, Routman EJ (1996) Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution 50:1042–1051. https://doi.org/10.1111/j.1558-5646.1996.tb02345.x28565298 Search in Google Scholar

Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39: 859-882. https://doi.org/10.1093/genetics/39.6.859120969417247525 Search in Google Scholar

Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics 11 (20): 2463–2468. https://doi.org/10.1093/hmg/11.20.246312351582 Search in Google Scholar

Costa e Silva J, Borralho NMG, Potts BM (2004) Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theoretical and Applied Genetics 108:1113–1119. https://doi.org/10.1007/s00122-003-1524-515067398 Search in Google Scholar

Crow JF (1987) Population genetics history: a personal view. Annual Review of Genetics 21: 1-22. https://doi.org/10.1146/annurev.ge.21.120187.0002453327458 Search in Google Scholar

Crow JF (2008) Maintaining evolvability. Journal of Genetics 87: 9-353. https://doi.org/10.1007/s12041-008-0057-819147924 Search in Google Scholar

Crow JF (2010) On epistasis: Why it is unimportant in polygenic directional selection. Philosophical Transactions of the Royal Society B 365: 1241-1244. https://doi.org/10.1098/rstb.2009.0275287181420308099 Search in Google Scholar

d’Annunzio R, Conche S, Landais D, Saint-André L, Joffre R, Barthes B (2008) Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. Forest Ecology and Management 255: 1050–1056. https://doi.org/10.1016/j.foreco.2007.10.027 Search in Google Scholar

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics 193: 327–345. https://doi.org/10.1534/genetics.112.143313356772722745228 Search in Google Scholar

de Visser JAGM, Cooper TF, Elena SF (2011) The causes of epistasis, rewiew. Proceedings of Royal Society B: Biological Sciences 278 (1725): 3617-3624. https://doi.org/10.1098/rspb.2011.1537320350921976687 Search in Google Scholar

Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-André L, Joffre R, Jourdan C, Bonnefond J-M, Berbigier P, Hamel O (2004) Spatial and temporal variation of soil respiration in an Eucalyptus plantation in Congo. Forest Ecology and Management 202: 149–160. https://doi.org/10.1016/j.foreco.2004.07.019 Search in Google Scholar

Falconer GS, Mackay TFC (1996) Introduction to quantitative genetics. Ed. 4. Longman group Ltd., Edinburgh, United Kingdom. 464p. Search in Google Scholar

Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Transactions of Royal Society of Edinburgh 52 : 399-433. https://doi.org/10.1017/s0080456800012163 Search in Google Scholar

Gallais A (1990) Théorie de la sélection en amélioration des plantes. Collection Sciences Agronomiques, Masson, Paris, France. 588p. Search in Google Scholar

Garcia-Cortes LA, Legarra A, Chevalet C, Toro MA (2013) Variance and Covariance of Actual Relationships between Relatives at One Locus. PLos One 8: 1-5. https://doi.org/10.1371/journal.pone.0057003 Search in Google Scholar

Goodnight CJ (1988) Epistasis and the effect of founder events on the additive genetic variance. Evolution 42 (3): 441-454. https://doi.org/10.1111/j.1558-5646.1988.tb04151.x Search in Google Scholar

Goodnight CJ (2000) Quantitative trait loci and gene interaction: the quantitative genetics of metapopulations. Heredity 84: 587–598. https://doi.org/10.1046/j.1365-2540.2000.00698.x Search in Google Scholar

Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA (2018) Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. Frontiers in Plant Science 9: 1693. https://doi.org/10.3389/fpls.2018.01693 Search in Google Scholar

Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theoretical and Applied Genetics 124:261–275. https://doi.org/10.1007/s00122-011-1702-9 Search in Google Scholar

Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397. https://doi.org/10.1534/genetics.107.081190 Search in Google Scholar

Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67-12: 3501–3511. https://doi.org/10.1111/evo.12214 Search in Google Scholar

Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Science 49: 1–12. https://doi.org/10.2135/cropsci2008.08.0512 Search in Google Scholar

Henderson CR (1974) General flexibility of linear model techniques for sire evaluation. Journal of Dairy Science 57:963–972. https://doi.org/10.3168/jds.s0022-0302(74)84993-3 Search in Google Scholar

Hill WG (2010) Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society B: Biology Sciences 365: 73-85. https://doi.org/10.1098/rstb.2009.0203284270820008387 Search in Google Scholar

Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. Plos Genetics 4(2). https://doi.org/10.1371/journal.pgen.1000008.eor Search in Google Scholar

Isik F, Li B, Frampton J (2003) Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of Loblolly pine. Forest Science 49 (1): 77-88. Search in Google Scholar

Jannink JL (2003) Selection dynamics and limits under additive × additive epistatic gene action. Crop Science 43: 489–497. https://doi.org/10.2135/cropsci2003.0489 Search in Google Scholar

Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct. Genomics 9: 166–177. https://doi.org/10.1093/bfgp/elq00120156985 Search in Google Scholar

Jasnos L, Korona R (2007) Epistatic buffering of fitness loss in yeast double deletion strains. Nature reviews Genetics 39: 550–554. https://doi.org/10.1038/ng198617322879 Search in Google Scholar

Kempthorne O (1954) The correlations between relatives in a random mating population. Proc. Royal Soc. London B 143: 103–113. https://doi.org/10.1098/rspb.1954.0056 Search in Google Scholar

Kerr RJ, Li L, Tier B, Dutkowski GW, McRae TA (2012) Use of the numerator relationship matrix in genetic analysis of autopolyploid species. Theor. Appl. Genet. https://doi.org/10.1007/s00122-012-1785-y22311370 Search in Google Scholar

Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends in Genetics 27 (8): 323-331. https://doi.org/10.1016/j.tig.2011.05.00721684621 Search in Google Scholar

Lu PX, Huber DA, White TL (1999) Potential biases of incomplete linear models in heritability estimation and breeding value prediction. Canadian Journal of Forestry Research 29: 724–736. https://doi.org/10.1139/x99-047 Search in Google Scholar

Luan T, Woolliams JA, Ødegård J, Dolezal M, Roman-Ponce SI, Bagnato A, Meuwissen THE (2012) The importance of identity-by-state information for the accuracy of genomic selection. Genetics Selection Evolution 44 (28): 2-7. https://doi.org/10.1186/1297-9686-44-28351733722937985 Search in Google Scholar

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, pp558-563 and 813-816. Search in Google Scholar

Mackay TFC (2014) Epistasis and quantitative traits: using model organism to study gene-gene interactions. Nature Reviews Genetics 15: 22-23. https://doi.org/10.1038/nrg3627 Search in Google Scholar

Mäki-Tanila A, Hill WG (2014) Influence of gene interaction on complex trait variation with multilocus models. Genetics 198: 355–367. https://doi.org/10.1534/genetics.114.165282 Search in Google Scholar

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157: 1819–1829. https://doi.org/10.1093/genetics/157.4.1819 Search in Google Scholar

Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27: 637-646. https://doi.org/10.1002/bies.20236 Search in Google Scholar

Nzila JDD, Bouillet J-P, Laclau J-P, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. Forest Ecology and Management 171: 209–221. https://doi.org/10.1016/s0378-1127(02)00474-7 Search in Google Scholar

Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, Takahashi A, Maeda S, Tsunoda T, Chen P, Lim S-C, Wong T-Y, Lee J-Y, Han B-G, Chen C-H, Kang D, Tsai F-J, Chang L-C, Fann S-JC, Mei H, Rao DC, Hixson JE, Chen S, Katsuya T, Isono M, Ogihara T, Chambers JC, Zhang W, Kooner JS, The KidneyGen Consortium, The CKDGen Consortium, Albrecht E, The GUGC consortium, Yamamoto K, Kubo M, Nakamura Y, Kamatani N, Kato N, He J, Chen Y-T, Cho Y-S, Tai E-S, Tanaka T (2012) Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44(8): 904–909. https://doi.org/10.1038/ng.2352473764522797727 Search in Google Scholar

Paixãoa T, Barton NH (2016) The effect of gene interactions on the long-term response to selection. PNAS 113 (16): 4422-4427. https://doi.org/10.1073/pnas.1518830113484342527044080 Search in Google Scholar

Palucci V, Schaeffer LR, Miglior F, Osborne V (2007) Non-additive genetic effects for fertility traits in Canadian Holstein cattle. Genetics Selection Evolution 39: 181–193. https://doi.org/10.1186/1297-9686-39-2-181268283617306200 Search in Google Scholar

Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are equal. Biometrika 58: 545–554. https://doi.org/10.1093/biomet/58.3.545 Search in Google Scholar

Paul AD, Foster GS, Caldwell T, McRae J (1997) Trends in genetic and environmental parameters for height, diameter, and volume in a multilocation clonal study with loblolly pine. Forest Science 43:87–98. Search in Google Scholar

Phillips PC (2008) Epistasis – The essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics 9: 855-867. https://doi.org/10.1038/nrg2452268914018852697 Search in Google Scholar

Pichot C, Tessier du Cros E (1989) Estimation of genetic parameters in eastern cottonwood (Populus destoides Bartr.). Consequence for the breeding strategy. Annals of Forest Science 46: 307-324. https://doi.org/10.1051/forest:19890401 Search in Google Scholar

Rosvall O, Lindgren D, Mullin TJ (1998) Sustainability robustness and efficiency of a multi-generation breeding strategy based on within-family clonal selection. Silvae Genetica 47: 307–321. Search in Google Scholar

Shelbourne CJA (1991) Genetic gains from different kinds of breeding population and seed or plant production population. Southern African Forestry Journal 160:49–65. https://doi.org/10.1080/00382167.1992.9630411 Search in Google Scholar

Stonecypher R, Mc Cullough R (1986) Estimates of additive and non-additive genetic variance from a clonal diallel of Douglas-fir Pseudotsuga menziesii (Mirb). Franco. In Proc. Int. Union For. Res. Org. joint Mtg. Working parties Breed. Theor. Prg. Test, Seed, Orch. Villiamsburg/VA. Publ by NCJU Industry Coop. Tree Imp. Prog. pp 211-227. Search in Google Scholar

Su G, Christensen OL, Ostersen T, Henryon M, Mogens S, Lund MS (2012) Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers. Plos One 7 (9): 1-7. https://doi.org/10.1371/journal.pone.0045293 Search in Google Scholar

Templeton AR (2000) Epistasis and complex traits. In: Epistasis and the Evolutionary Process. Wolf J, Brodie III B, Wade M (Eds). New York, Oxford University Press, pp41-57. Search in Google Scholar

Van Der Werf JHJ, de Boer W (1989) Influence of non-additive effects on estimation of genetic parameters in dairy cattle. Journal of Dairy Science 72: 2606–2614. https://doi.org/10.3168/jds.s0022-0302(89)79401-7 Search in Google Scholar

Verhoeven KJF, Casella G, Mc Intyre LM (2010) Epistasis: Obstacle or Advantage for Mapping Complex Traits? Plos One 5 (8): 1-12. https://doi.org/10.1371/journal.pone.0012264292872520865037 Search in Google Scholar

Wade MJ (2002) A gene’s eye view of epistasis, selection and speciation. J. Evol. Biol. 15: 337–346. https://doi.org/10.1046/j.1420-9101.2002.00413.x Search in Google Scholar

Wan X, Yang C, Yang Q, Zhao H, Yu W (2013) The complete compositional epistasis detection in genome-wide association studies. BMC Genetics 14 (7): http://www.biomedcentral.com/1471-2156/14/7.10.1186/1471-2156-14-7 Search in Google Scholar

Witte J (1998) Gene–environment interaction. In Armitage P. and Colton T. (Eds), Encyclopedia of Biostatistics. Wiley, Chichester, pp1613–1614. Search in Google Scholar

Wright S (1980) Genic and organismic selection. Evolution 34:825-843. https://doi.org/10.1111/j.1558-5646.1980.tb04022.x28581131 Search in Google Scholar

Xu S, Jia Z (2007) Genome wide analysis of epistatic effects for quantitative traits in barley. Genetics 175: 1955–1963.10.1534/genetics.106.066571 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo