Zitieren

1. COVID-19 CORONAVIRUS PANDEMIC, available online: https://www.worldometers.info/coronavirus/, accessed on 21 November 2022. Search in Google Scholar

2. Thakur V, Ratho RK, Kumar P, Bhatia SK, Bora I, Mohi GK, et al. Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. J Clin Med. 2021 Jan 24;10(3):446. DOI: 10.3390/jcm10030446786618933498861 Open DOISearch in Google Scholar

3. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020 Jul;26(7):1017-32. DOI: 10.1038/s41591-020-0968-332651579 Open DOISearch in Google Scholar

4. Fu EL, Janse RJ, de Jong Y, van der Endt VHW, Milders J, van der Willik EM, et al. Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis. Clin Kidney J. 2020 Sep 2; 13(4): 550-63. DOI: 10.1093/ckj/sfaa160746759332897278 Open DOISearch in Google Scholar

5. Głowacka M, Lipka S, Młynarska E, Franczyk B, Rysz J. Acute Kidney Injury in COVID-19. Int J Mol Sci. 2021 Jul 28;22(15):8081. DOI: 10.3390/ijms22158081834753634360866 Open DOISearch in Google Scholar

6. He W, Liu X, Hu B, Li D, Chen L, Li Y, et al. Gender and Ethnic Disparities of Acute Kidney Injury in COVID-19 Infected Patients: A Literature Review. Front Cell Infect Microbiol. 2022 Jan 13;11:778636. DOI: 10.3389/fcimb.2021.778636882317935145920 Open DOISearch in Google Scholar

7. Toth-Manikowski SM, Caldwell J, Joo M, Chen J, Meza N, Bruinius J, et al; STOP-COVID Investigators. Sex-related differences in mortality, acute kidney injury, and respiratory failure among critically ill patients with COVID-19. Medicine (Baltimore). 2021 Dec 17;100(50):e28302. DOI: 10.1097/MD.0000000000028302867798934918709 Open DOISearch in Google Scholar

8. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front Public Health. 2020 Apr 29;8:152. DOI: 10.3389/fpubh.2020.00152720110332411652 Open DOISearch in Google Scholar

9. El Mouhayyar C, Dewald J, Cabrales J, Tighiouart H, Moraco AH, Jaber BL, et al. Factors Associated with Severity of Acute Kidney Injury and Adverse Outcomes in Critically Ill Patients with COVID-19. Nephron. 2022 Jun 8: 1-9. DOI: 10.1159/000524657939377635675790 Open DOISearch in Google Scholar

10. Nguyen NT, Chinn J, De Ferrante M, Kirby KA, Hohmann SF, Amin A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS One. 2021 Jul 9; 16(7): e0254066. DOI: 10.1371/journal.pone.0254066827014534242273 Open DOISearch in Google Scholar

11. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16; 181(2): 271-80.e8. DOI: 10.1016/j.cell.2020.02.052710262732142651 Open DOISearch in Google Scholar

12. Khan S, Chen L, Yang CR, Raghuram V, Khundmiri SJ, Knepper MA. Does SARS-CoV-2 Infect the Kidney? J Am Soc Nephrol. 2020 Dec;31(12):2746-8. DOI: 10.1681/ASN.2020081229779020333051359 Open DOISearch in Google Scholar

13. Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Jänne OA. Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol. 2010 Apr 12; 317(1-2):14-24. DOI: 10.1016/j.mce.2009.12.02220035825 Open DOISearch in Google Scholar

14. Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020 Jun 1;318(6):L1280-1. DOI: 10.1152/ajplung.00153.2020727698232432918 Open DOISearch in Google Scholar

15. O’Brien J, Du KY, Peng C. Incidence, clinical features, and outcomes of COVID-19 in Canada: impact of sex and age. J Ovarian Res. 2020 Nov 24; 13(1):137. DOI: 10.1186/s13048-020-00734-4768485433234144 Open DOISearch in Google Scholar

16. Wenzhong, L.; Hualan, L. COVID-19: Attacks the 1-beta Chain of Hemoglobin to Disrupt Respiratory Function and Escape Immunity. ChemRxiv 2022, Cambridge Open Engage, available online: doi: 10.26434/chemrxiv-2021-dtpv3-v11. DOI: 10.26434/chemrxiv-2021-dtpv3-v11 Open DOISearch in Google Scholar

17. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, Suppl 3,1-150. Search in Google Scholar

18. Kaushal K, Kaur H, Sarma P, Bhattacharyya A, Sharma DJ, Prajapat M, et al. Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis. J Crit Care. 2022 Feb; 67: 172-181. DOI: 10.1016/j.jcrc.2021.09.023860455734808527 Open DOISearch in Google Scholar

19. Ahmed S, Jafri L, Hoodbhoy Z, Siddiqui I. Prognostic Value of Serum Procalcitonin in COVID-19 Patients: A Systematic Review. Indian J Crit Care Med. 2021 Jan;25(1):77-84. DOI: 10.5005/jp-journals-10071-23706787429133603306 Open DOISearch in Google Scholar

20. Chan YL, Tseng CP, Tsay PK, Chang SS, Chiu TF, Chen JC. Procalcitonin as a marker of bacterial infection in the emergency department: an observational study. Crit Care. 2004 Feb;8(1):R12-20. DOI: 10.1186/cc239642005814975050 Open DOISearch in Google Scholar

21. Meisner M, Lohs T, Huettemann E, Schmidt J, Hueller M, Reinhart K. The plasma elimination rate and urinary secretion of procalcitonin in patients with normal and impaired renal function. Eur J Anaesthesiol. 2001 Feb;18(2): 79-87. DOI: 10.1097/00003643-200102000-00004 Open DOISearch in Google Scholar

22. Sun Y, Jiang L, Shao X. Predictive value of procalcitonin for diagnosis of infections in patients with chronic kidney disease: a comparison with traditional inflammatory markers C-reactive protein, white blood cell count, and neutrophil percentage. Int Urol Nephrol. 2017 Dec;49(12):2205-16. DOI: 10.1007/s11255-017-1710-z28956241 Open DOISearch in Google Scholar

23. Wu SC, Liang CX, Zhang YL, Hu WP. Elevated serum procalcitonin level in patients with chronic kidney disease without infection: A case-control study. J Clin Lab Anal. 2020 Feb;34(2):e23065. DOI: 10.1002/jcla.23065703159231617251 Open DOISearch in Google Scholar

24. Nakamura Y, Murai A, Mizunuma M, Ohta D, Kawano Y, Matsumoto N, et al. Potential use of procalcitonin as biomarker for bacterial sepsis in patients with or without acute kidney injury. J Infect Chemother. 2015 Apr; 21(4): 257-63. DOI: 10.1016/j.jiac.2014.12.00125677555 Open DOISearch in Google Scholar

25. Chun K, Chung W, Kim AJ, Kim H, Ro H, Chang JH, et al. Association between acute kidney injury and serum procalcitonin levels and their diagnostic usefulness in critically ill patients. Sci Rep. 2019 Mar 18;9(1):4777. DOI: 10.1038/s41598-019-41291-1642301930886220 Open DOISearch in Google Scholar

26. Takahashi G, Shibata S, Fukui Y, Okamura Y, Inoue Y. Diagnostic accuracy of procalcitonin and presepsin for infectious disease in patients with acute kidney injury. Diagn Microbiol Infect Dis. 2016 Oct; 86(2): 205-10. DOI: 10.1016/j.diagmicrobio.2016.07.01527489118 Open DOISearch in Google Scholar

27. Kan WC, Huang YT, Wu VC, Shiao CC. Predictive Ability of Procalcitonin for Acute Kidney Injury: A Narrative Review Focusing on the Interference of Infection. Int J Mol Sci. 2021 Jun 27;22(13):6903. DOI: 10.3390/ijms22136903826824934199069 Open DOISearch in Google Scholar

28. Dong R, Wan B, Lin S, Wang M, Huang J, Wu Y, et al. Procalcitonin and Liver Disease: A Literature Review. J Clin Transl Hepatol. 2019 Mar 28;7(1):51-5. DOI: 10.14218/JCTH.2018.00012644164830944820 Open DOISearch in Google Scholar

29. Elefsiniotis IS, Skounakis M, Vezali E, Pantazis KD, Petrocheilou A, Pirounaki M, et al. Clinical significance of serum procalcitonin levels in patients with acute or chronic liver disease. Eur J Gastroenterol Hepatol. 2006 May; 18(5): 525-30. DOI: 10.1097/00042737-200605000-0001216607149 Open DOISearch in Google Scholar

30. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021 Mar;17(3):145-7. DOI: 10.1038/s41584-020-00571-1786361533547426 Open DOISearch in Google Scholar

31. Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014 Apr;6(4):748-73. DOI: 10.1039/C3MT00347G24549403 Open DOISearch in Google Scholar

32. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019 Feb 1;10:119. DOI: 10.3389/fimmu.2019.00119636726230774631 Open DOISearch in Google Scholar

33. Pál K, Molnar AA, Huțanu A, Szederjesi J, Branea I, Timár Á, et al. Inflammatory Biomarkers Associated with In-Hospital Mortality in Critical COVID-19 Patients. Int J Mol Sci. 2022 Sep;23(18):10423. DOI: 10.3390/ijms231810423949935236142336 Open DOISearch in Google Scholar

34. Carubbi F, Salvati L, Alunno A, Maggi F, Borghi E, Mariani R, et al. Ferritin is associated with the severity of lung involvement but not with worse prognosis in patients with COVID-19: data from two Italian COVID-19 units. Sci Rep 2021 Mar;11(1):4863. DOI: 10.1038/s41598-021-83831-8792138633649408 Open DOISearch in Google Scholar

35. Ghio AJ, Ford ES, Kennedy TP, Hoidal JR. The association between serum ferritin and uric acid in humans. Free Radic Res. 2005 Mar;39(3):337-42. DOI: 10.1080/1071576040002608815788238 Open DOISearch in Google Scholar

36. Raimondi F, Novelli L, Ghirardi A, Russo FM, Pellegrini D, Biza R, et al. Covid-19 and gender: lower rate but same mortality of severe disease in women-an observational study. BMC Pulm Med. 2021 Mar 20;21(1):96. DOI: 10.1183/13993003.congress-2021. PA3663 Open DOISearch in Google Scholar

eISSN:
2284-5623
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Humanbiologie, Mikrobiologie und Virologie