Uneingeschränkter Zugang

Micromechanical Modeling for Analysis of Shear Wave Propagation in Granular Material


Zitieren

Jiang, M., Kamura, A. (2022), Numerical study on liquefaction characteristics of granular materials under Rayleigh-wave strain conditions using 3D DEM, soils and Foundations 62 (2022) 101176. https://doi.org/10.1016/j.sandf.2022.101176. Search in Google Scholar

Cui, J., Men, F., Wan, X., (2004), Soil liquefaction induced by Rayleigh wave. 13th World Conference on Earthquake Engineering. Search in Google Scholar

Nakase. H, Takeda. T, Oda. M, (1999), A simulation study on liquefaction using DEM. Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering, pp. 637–642. Search in Google Scholar

Guo, Y., Zhao, C., Markine, V., Jing, G., & Zhai, W. (2020). Calibration for discrete element modelling of railway ballast: A review. Transportation Geotechnics, 23, Article 100341. https://doi.org/10.1016/j.trgeo.2020.100341. Search in Google Scholar

Kumar, N., Suhr, B., Marschnig, S., Dietmaier, P., Marte, C., & Six, K. (2019). Micromechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: Effects of elastic layers and ballast types. Granular Matter, 21, 106. https://doi.org/10.1007/s10035-019-0956-9. Search in Google Scholar

Zamani, N., El Shamy, U. (2011), Analysis of wave propagation in dry granular soils using DEM simulations. Acta Geotechnica (2011) 6:167–182. https://doi.org/10.1007/s11440-011-0142-7. Search in Google Scholar

Sadd, MH., Adhikari, G., Cardoso, F. (2000), DEM simulation of wave propagation in granular materials, Powder Technology 109 Ž2000. 222–233. https://doi.org/10.1016/S0032-5910(99)00238-7. Search in Google Scholar

O’Donovan, J., Ibrahim, E., O’Sullivan, C., Hamlin, S., Muir Wood, D. & Marketos, G. (2016), Micromechanics of seismic wave propagation in granular materials, Granular Matter (2016) 18:56. https://doi.org/10.1007/s10035-015-0599-4. Search in Google Scholar

Sakamura, Y., Komaki, H. (2012), Numerical simulations of shock-induced load transfer processes in granular media using the discrete element method, Shock Waves (2012) 22:57–68. https://doi.org/10.1007/s00193-011-0347-6. Search in Google Scholar

Ning, Z., Khoubani, A., Evans, T.M. (2015), Shear wave propagation in granular assemblies, Computers and Geotechnics 69 (2015) 615–626. https://doi.org/10.1016/j.compgeo.2015.07.004. Search in Google Scholar

Tang, X., Yang, J. (2021), Wave propagation in granular material: What is the role of particle shape? Journal of the Mechanics and Physics of Solids 157 (2021) 104605. https://doi.org/10.1016/j.jmps.2021.104605. Search in Google Scholar

Peters, J. F., Muthuswamy, M. (2005), Characterization of force chains in granular materia, Phys. Rev. E 72, 041307. https://doi.org/10.1103/PhysRevE.72.041307 Search in Google Scholar

Longlong Fu, Shunhua Zhou, Guo, P., Wang, S., & Luo, Z. (2019), Induced force chain anisotropy of cohesionless granular materials during biaxial compression, Granular Matter (2019) 21:52. https://doi.org/10.1007/s10035-019-0899-1. Search in Google Scholar

Longlong Fu, Shunhua Zhou, Zheng, Y., & Zhuang, L (2023), Characterizing dynamic load propagation in cohesionless granular packing using force chain, Particuology 81 (2023) 135e143. https://doi.org/10.1016/j.partic.2023.01.007. Search in Google Scholar

Charles S. Campbell (2003), A problem related to the stability of force chains, Granular Matter 5, 129–134. https://doi.org/10.1007/s10035-003-0138-6. Search in Google Scholar

Mansouri M, El Youssoufi MS (2016), Numerical simulation of the quicksand phenomenon by a 3D coupled Discrete Element - Lattice Boltzmann hydromechanical model, Int. J. Numer. Anal. Meth. Geomech. (2016). https://doi.org/10.1002/nag.2556. Search in Google Scholar

Pöschel T, Schwager T (2005). Computational Granular Dynamics - Models and Algorithms, Springer-Vrlag: Berlin Heidelberg, 2005. Search in Google Scholar

Richefeu. V, (2005), Approche par éléments discrets 3D du comportement de matériaux granulaires cohésifs faiblement contraints, thèse Université Montpellier II - Sciences et Techniques du Languedoc, 2005. Français. NNT: tel-00012112. Search in Google Scholar

Cundall PA, Strack ODL (1979). A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47 Search in Google Scholar

Delenne, J.Y., El Youssoufi, M.S., Cherblanc, F., Bénet, J.C. (2004), Int. J. Numer. Anal. Methods Geomech. 28, 1577 (2004). Search in Google Scholar

Heitz JF (1992) Wave propagation in non-linear medium. PhD Thesis, Grenoble University, France. Search in Google Scholar

Semblat JF, Luong MP (1998), Wave propagation through soils in centrifuge testing. J Earthquake Eng 2(10):147–171. https://doi.org/10.1080/13632469809350317. Search in Google Scholar

Kumar, N., Suhr, B., Marschnig, S., Dietmaier, P., Marte, C., & Six, K. (2019). Micromechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: Effects of elastic layers and ballast types. Granular Matter, 21, 106. https://doi.org/10.1007/s10035-019-0956-9 Search in Google Scholar

Verruijt, A. (2009). An introduction to soil dynamics (Vol. 24). Springer Science & Business Media. Search in Google Scholar

Acton, J. R., Squire P. T., (1985) Solving Equations with Physical Understanding, Adam Hilger Ltd, Bristol. 219 pp. Search in Google Scholar

eISSN:
2286-2218
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Betriebswirtschaft, Branchen, Umweltmanagement, Technik, Einführungen und Gesamtdarstellungen, andere, Materialwissenschaft