Uneingeschränkter Zugang

Evaluation of 2D affine — hand-crafted detectors for feature-based TLS point cloud registration


Zitieren

Abbate, E., Sammartano, G., and Spanò, A. (2019). Prospective upon multi-source urban scale data for 3D documentation and monitoring of urban legacies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11:11–19, doi:10.5194/isprs-archives-xlii-2-w11-11-2019. Search in Google Scholar

Agrawal, M., Konolige, K., and Blas, M. R. (2008). Censure: Center surround extremas for realtime feature detection and matching. In European conference on computer vision, pages 102–115. Springer, doi:10.1007/978-3-540-88693-8_8. Search in Google Scholar

Arif, R. and Essa, K. (2017). Evolving techniques of documentation of a world heritage site in Lahore. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5:33–40, doi:10.5194/isprs-archives-xlii-2-w5-33-2017. Search in Google Scholar

Bae, K.-H. and Lichti, D. D. (2008). A method for automated registration of unorganised point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1):36–54, doi:10.1016/j.isprsjprs.2007.05.012. Search in Google Scholar

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded Up Robust Features, pages 404–417. Springer Berlin Heidelberg, doi:10.1007/11744023_32. Search in Google Scholar

Bianco, S., Ciocca, G., and Marelli, D. (2018). Evaluating the performance of Structure from Motion pipelines. Journal of Imaging, 4(8):98, doi:10.3390/jimaging4080098. Search in Google Scholar

Biber, P. and Straßer, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 3, pages 2743–2748. IEEE, doi:10.1109/IROS.2003.1249285. Search in Google Scholar

Boehler, W., Vicent, M. B., Marbs, A., et al. (2003). Investigating laser scanner accuracy. The international archives of photogrammetry, remote sensing and spatial information sciences, 34(Part 5):696–701. Search in Google Scholar

Bosché, F. (2010). Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Advanced Engineering Informatics, 24(1):107–118, doi:10.1016/j.aei.2009.08.006. Search in Google Scholar

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, doi:10.1109/tpami.1986.4767851. Search in Google Scholar

Chen, Y., Chen, Y., and Wang, G. (2019). Bundle adjustment revisited. doi:10.48550/ARXIV.1912.03858. Search in Google Scholar

Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., and Chen, Y. (2018). Registration of laser scanning point clouds: A review. Sensors, 18(5):1641, doi:10.3390/s18051641. Search in Google Scholar

Cloudcompare (2024). CloudCompare project. https://cloudcompare-org.danielgm.net/. Search in Google Scholar

Das, A. and Waslander, S. L. (2012). Scan registration with multi-scale k-means normal distributions transform. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, doi:10.1109/iros.2012.6386185. Search in Google Scholar

Dong, Z., Yang, B., Liang, F., Huang, R., and Scherer, S. (2018). Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 144:61–79, doi:10.1016/j.isprsjprs.2018.06.018. Search in Google Scholar

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model ~tting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, doi:10.1145/358669.358692. Search in Google Scholar

Giżyńska, J., Komorowska, E., and Kowalczyk, M. (2022). The comparison of photogrammetric and terrestrial laser scanning methods in the documentation of small cultural heritage object – case study. Journal of Modern Technologies for Cultural Heritage Preservation, 1(1), doi:10.33687/jmtchp.001.01.0013. Search in Google Scholar

Guo, Y., Sohel, F., Bennamoun, M., Lu, M., and Wan, J. (2013). Rotational projection statistics for 3D local surface description and object recognition. International Journal of Computer Vision, 105(1):63–86, doi:10.1007/s11263-013-0627-y. Search in Google Scholar

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Procedings of the Alvey Vision Conference 1988, AVC 1988. Alvey Vision Club, doi:10.5244/c.2.23. Search in Google Scholar

Hekimoglu, S., Demirel, H., and Aydin, C. (2002). Reliability of the conventional deformation analysis methods for vertical networks. In FIG XXII International Congress, pages 1–13. International Federation of Surveyors Washington, DC. Search in Google Scholar

Karwel, A. K. and Markiewicz, J. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications, 1(2), doi:10.55627/smla.001.02.0015. Search in Google Scholar

Łapiński, S. (2011). Method of network reliability analysis based on accuracy characteristics. Reports on Geodesy, 90(1):265–270. Search in Google Scholar

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable keypoints. In 2011 International Conference on Computer Vision. IEEE, doi:10.1109/iccv.2011.6126542. Search in Google Scholar

Lowe, D. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, doi:10.1109/iccv.1999.790410. Search in Google Scholar

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110, doi:10.1023/b:visi.0000029664.99615.94. Search in Google Scholar

Lu-Xingchang and Liu-Xianlin (2006). Reconstruction of 3D Model Based on Laser Scanning, pages 317–332. Springer Berlin Heidelberg, doi:10.1007/978-3-540-36998-1_25. Search in Google Scholar

Markiewicz, J., Łapiński, S., Bocheńska, A., and Kot, P. (2021). The reliability assessment of the TLS registration methods – the case study of the Royal Castle in Warsaw. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2021:855–861, doi:10.5194/isprs-archives-xliii-b2-2021-855-2021. Search in Google Scholar

Markiewicz, J., Kot, P., Markiewicz, u., and Muradov, M. (2023). The evaluation of hand-crafted and learned-based features in Terrestrial Laser Scanning-Structure-from-Motion (TLS-SfM) indoor point cloud registration: the case study of cultural heritage objects and public interiors. Heritage Science, 11(1), doi:10.1186/s40494-023-01099-9. Search in Google Scholar

Markiewicz, J. and Zawieska, D. (2019). The in˚uence of the cartographic transformation of TLS data on the quality of the automatic registration. Applied Sciences, 9(3):509, doi:10.3390/app9030509. Search in Google Scholar

Markiewicz, J. S. (2016). The use of computer vision algorithms for automatic orientation of Terrestrial Laser Scanning data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3:315–322, doi:10.5194/isprsarchives-xli-b3-315-2016. Search in Google Scholar

Moisan, L. and Stival, B. (2004). A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal of Computer Vision, 57(3):201–218, doi:10.1023/b:visi.0000013094.38752.54. Search in Google Scholar

Moussa, W. (2014). Integration of digital photogrammetry and terrestrial laser scanning for cultural heritage data recording. PhD thesis, University Of Stuttgart, Germany. Search in Google Scholar

Mukupa, W., Roberts, G. W., Hancock, C. M., and Al-Manasir, K. (2016). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, pages 1–18, doi:10.1080/00396265.2015.1133039. Search in Google Scholar

Muradov, M., Kot, P., Markiewicz, J., Łapiński, S., Tobiasz, A., Onisk, K., Shaw, A., Hashim, K., Zawieska, D., and Mohi-Ud-Din, G. (2022). Non-destructive system for in-wall moisture assessment of cultural heritage buildings. Measurement, 203:111930, doi:10.1016/j.measurement.2022.111930. Search in Google Scholar

Nowak, E. and Odziemczyk, W. (2018). Adjustment of observation accuracy harmonisation parameters in optimising the network’s reliability. Reports on Geodesy and Geoinformatics, 105(1):53–59, doi:10.2478/rgg-2018-0006. Search in Google Scholar

Pavlov, A. L., Ovchinnikov, G. V., Derbyshev, D. Y., Tsetserukou, D., and Oseledets, I. V. (2017). AA-ICP: Iterative Closest Point with Anderson Acceleration. 2018 IEEE International Conference On Robotics And Automation (ICRA), doi:10.48550/ARXIV.1709.05479. Search in Google Scholar

Pomerleau, F., Colas, F., and Siegwart, R. (2015). A review of point cloud registration algorithms for mobile robotics. Foundations and Trends in Robotics, 4(1):1–104, doi:10.1561/2300000035. Search in Google Scholar

Prószyński, W. and Łapiński, S. (2018). Reliability analysis for non-distorting connection of engineering survey networks. Survey Review, 51(366):219–224, doi:10.1080/00396265.2018.1425605. Search in Google Scholar

Rashidi, M., Mohammadi, M., Sadeghlou Kivi, S., Abdolvand, M. M., Truong-Hong, L., and Samali, B. (2020). A decade of modern bridge monitoring using Terrestrial Laser Scanning: Review and future directions. Remote Sensing, 12(22):3796, doi:10.3390/rs12223796. Search in Google Scholar

Rofatto, V. F., Matsuoka, M. T., Klein, I., Veronez, M. R., Bonimani, M. L., and Lehmann, R. (2018). A half-century of baarda’s concept of reliability: a review, new perspectives, and applications. Survey Review, 52(372):261–277, doi:10.1080/00396265.2018.1548118. Search in Google Scholar

Rosten, E. and Drummond, T. (2006). Machine Learning for High-Speed Corner Detection, pages 430–443. Springer Berlin Heidelberg, doi:10.1007/11744023_34. Search in Google Scholar

Salvi, J., Matabosch, C., Fo~, D., and Forest, J. (2007). A review of recent range image registration methods with accuracy evaluation. Image and Vision computing, 25(5):578–596, doi:10.1016/j.imavis.2006.05.012. Search in Google Scholar

Staiger, R. (2005). The geometrical quality of Terrestrial Laser Scanner (TLS). In Proceedings of FIG Working Week and GSDI-8, Cairo, Egypt, pages 1–11. Search in Google Scholar

Takeuchi, E. and Tsubouchi, T. (2006). A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, doi:10.1109/iros.2006.282246. Search in Google Scholar

Tam, G. K. L., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., and Rosin, P. L. (2013). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19(7):1199–1217, doi:10.1109/tvcg.2012.310. Search in Google Scholar

Tazir, M. L., Gokhool, T., Checchin, P., Malaterre, L., and Trassoudaine, L. (2019). Cluster ICP: Towards sparse to dense registration. In Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, volume 867, pages 730–747. Springer, doi:10.1007/978-3-030-01370-7_57. Search in Google Scholar

Tobiasz, Markiewicz, Łapiński, Nikel, Kot, and Muradov (2019). Review of methods for documentation, management, and sustainability of cultural heritage. Case Study: Museum of King Jan III’s Palace at Wilanów. Sustainability, 11(24):7046, doi:10.3390/su11247046. Search in Google Scholar

Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815–830, doi:10.1109/tpami.2009.77. Search in Google Scholar

Tuytelaars, T. and Mikolajczyk, K. (2007). Local invariant feature detectors: A survey. Foundations and Trends® in Computer Graphics and Vision, 3(3):177–280, doi:10.1561/0600000017. Search in Google Scholar

Urban, S. and Weinmann, M. (2015). Finding a good feature detector-descriptor combination for the 2D keypoint-based registration of TLS point clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5:121–128, doi:10.5194/isprsannals-ii-3-w5-121-2015. Search in Google Scholar

Vacca, G., Mistretta, F., Stochino, F., and Dessi, A. (2016). Terrestrial laser scanner for monitoring the deformations and the damages of buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5:453–460, doi:10.5194/isprs-archives-xli-b5-453-2016. Search in Google Scholar

Wang, W., Zhao, W., Huang, L., Vimarlund, V., and Wang, Z. (2014). Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 1(5):325–337, doi:10.1016/s2095-7564(15)30279-8. Search in Google Scholar

Weinmann, M. (2016). From Irregularly Distributed 3D Points To Object Classes. Reconstruction And Analysis Of 3D Scenes. Springer International Publishing, doi:10.1007/978-3-319-29246-5. Search in Google Scholar

Wojtkowska, M., Kedzierski, M., and Delis, P. (2021). Validation of terrestrial laser scanning and arti~-cial intelligence for measuring deformations of cultural heritage structures. Measurement, 167:108291, doi:10.1016/j.measurement.2020.108291. Search in Google Scholar

Xu, Y., Boerner, R., Yao, W., Hoegner, L., and Stilla, U. (2019). Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets. ISPRS Journal of Photogrammetry and Remote Sensing, 151:106–123, doi:10.1016/j.isprsjprs.2019.02.015. Search in Google Scholar

Yu, G. and Morel, J.-M. (2011). ASIFT: An algorithm for fully affine invariant comparison. Image Processing On Line, 1:11–38, doi:10.5201/ipol.2011.my-asift. Search in Google Scholar

Z+F (2024). Zoller + Fröhlich. https://www.zofre.de/en/. Search in Google Scholar

eISSN:
2391-8152
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Informatik, andere, Geowissenschaften, Geodäsie, Kartografie und Photogrammetrie