Zitieren

A compilation of outgassing data on vacuum materials (1982). Princeton University Plasma Physics Laboratory Database. https://ncsx.pppl.gov/NCSX_Engineering/Materials/VacuumMaterials/Outgassing_Data.pdf (accessed 12.03.2022). Search in Google Scholar

Alton, G. D. (1974). Ion Sources for Accelerators. www.osti.gov/servlets/purl/4244522-TwJ9HX/ (accessed 14.03.2022). Search in Google Scholar

Analog Devices. Datasheet AD9851: CMOS 180 MHz DDS/DAC Synthesizer Data Sheet (Rev. D). www.analog.com/media/en/technical-documentation/data-sheets/AD9851.pdf (accessed 14.03.2022). Search in Google Scholar

Atalla, M., Tannenbaum, E., Scheibner, E. J. (1959). Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Techn. J., 38 (3), 749–783. doi:10.1002/j, 1538-7305.10.1002/j.1538-7305.1959.tb03907.x Search in Google Scholar

Brotherton, R. J., Steinberg, H. (2016). Progress in Boron Chemistry: Volume 2. Elsevier Science & Technology, Kent. 310 pp. Search in Google Scholar

Bugaev, A. S., Vizir, A. V., Gushenets, V. I., Nikolaev, A. G., Oks, E. M., Savkin, K. P., Yushkov, Yu. G., Tyunkov, A. V. (2019). Generation of boron ions for beam and plasma technologies. Russ. Phys. J., 62 (7), DOI: 10.1007/s11182-019-01825-6.10.1007/s11182-019-01825-6 Search in Google Scholar

Chiggiato, P. (2017). Materials and Properties IV, Outgassing. https://indico.cern.ch/event/565314/contributions/2285743/attachments/1466415/2277367/Outgassing-CAS-Lund-final.pdf (accessed 13.08.2020). Search in Google Scholar

Chivers, D. J. (1992). Freeman ion source: An overview (invited). Rev. Sci. Instrum., 63 (4), 2501–2506. https://doi.org/10.1063/1.1142874 (accessed 12.03.2022).10.1063/1.1142874 Search in Google Scholar

Christensen, S. M. (2012). Modeling and measuring the characteristics of an inductivly coupled plasma antenna for micro-propulsion system. Master’s Thesis, Boise State University. 92 pp. https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1345&context=td (accessed 12.03.2022). Search in Google Scholar

Current, M. I., Rubin, L., Sinclair, F. (2018). Commercial ion implantation systems (Chapter 3). In: Ion Implantation Science and Technology. Ion Implant Technology Co, p. 44. Search in Google Scholar

Darlington, S. (1952). Semiconductor signal translation device. US Patent 1952-05-09 as US286914A, at 1953-12-22 refreshed asUS2663806A. Filed by Bell Telephone Laboratories Inc 1952-05-09. Search in Google Scholar

Encyclopedia of Spectroscopy and Spectrometry (3rd edn.) (2016). Academic Press. 3584 pp. Search in Google Scholar

Evans, E. H. Encyclopedia of Analytical Science (2nd edn.) (2005). Elsevier. 5000 pp. Search in Google Scholar

Fair, R. B. (1998). History of some early developments in ion-implantation technology leading to silicon transistor manufacturing. Proc. IEEE, 86 (1), 111–137.10.1109/5.658764 Search in Google Scholar

Fourches, N., Zielińska, M., Charles, G. (2019). High purity germanium: From gamma-ray detection to dark matter subterranean detectors. In: Almayahi, B. (Ed.). Use of Gamma Radiation Techniques in Peaceful Applications. http://dx.doi.org/10.5772/intechopen.82864.10.5772/intechopen.82864 Search in Google Scholar

Freeman, J. H. (1963). A new ion source for electromagnetic isotope separators. Nucl. Instrum. Meth., 22, 306–316.10.1016/0029-554X(63)90257-X Search in Google Scholar

Frolova, V. P., Gushenets, V. I., Yushkov, G., Frolova, V. P., Shandrikov, M. V., Tyunkov, A., Savkin, K. P., Yushkov, Y., Nikolaev, A. G., Oks, E. M, Gushenets, V., Bugaev, A. S., Vizir, A. V. (2017). Generation of boron ions for beam and plasma technologies. IEEE Trans. Plasma Sci., 45, 2070–2074.10.1109/TPS.2017.2656154 Search in Google Scholar

Gentile, K., Cushing, R. (1999). Technical Tutorial on Digital Signal Synthesis. www.analog.com/en/education/education-library/technical-tutorial-dds.html (accessed 13.03.2022). Search in Google Scholar

Gibbons, J. F. (1968). Ion implantation in semiconductors—Part I: Range distribution theory and experiments. Proc. IEEE, 56 (3), 295–319.10.1109/PROC.1968.6273 Search in Google Scholar

Gibbons, J. F. (1972). Ion implantation in semiconductors—Part II: Damage production and annealing. Proc. IEEE, 60 (9), 1062–1096.10.1109/PROC.1972.8854 Search in Google Scholar

Gibbons, J. F. (1987). Historical perspectives on ion implantation. Nucl. Instrum. Meth., B21, 83–89.10.1016/0168-583X(87)90803-2 Search in Google Scholar

Gott, R. P. (2017). The development and analysis of a heaterless, insertless, microplasma-based hollow cathode. MSc Thesis. Department of Mechanical and Aerospace Engineering, University of Alabama, Huntsville. 73 pp. www.uah.edu/images/administrative/perl/papers/thesis/2018_gott_ms_thesis_final.pdf (accessed 20.04.2022). Search in Google Scholar

Greiner, E. S., Gutowski, J. A. (1957). Electrical resistivity of boron. J. Appl. Phys., 28, 1364. DOI:10.1109/TPS.2011.216763410.1109/TPS.2011.2167634 Search in Google Scholar

Greenfield, S., Durrani, T. M., Tyson, J., Watson, C. A. (1990). A comparison of boosted-discharge hollow cathode lamps and an inductively coupled plasma (ICP) as excitation sources in ICP atomic fluorescence spectrometry. Spectrochim. Acta B Atom. Spectrosc., 45 (3), 341–349.10.1016/0584-8547(90)80109-V Search in Google Scholar

Gundersen, M. A., Schaefer, G., Schoenbach, K. H. (1990). Basic mechanisms contributing to the hollow cathode effect. In: Physics and Applications of Pseudosparks. NATO ASI Series (Series B: Physics), Vol. 219. Springer, Boston, pp. 55–76.10.1007/978-1-4615-3786-1_3 Search in Google Scholar

Gushenets, V. I., Oks, E. M., Bugaev, A. S. (2018). Generation of boron ions for beam and plasma technologies. Proceedings of the 28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, pp. 411–414. Search in Google Scholar

Gushenets, V., Bugaev, A., Oks, E. (2019). Boron vacuum-arc ion source with LaB6cathode. Rev. Sci. Instrum., 90, 113309. DOI: 10.1063/1.5127096.10.1063/1.512709631779375 Search in Google Scholar

Hanley, P. R. (1983). Physical limitations of ion implantation equipment. In: Ryssel, H. et al. (eds.). Ion Implantation: Equipment and Techniques. Springer-Verlag, Berlin/Heidelberg, pp. 2–24.10.1007/978-3-642-69156-0_1 Search in Google Scholar

Harwick, J. (Radio Corporation of America) (1953). Semiconductor phase shift oscillator and device. US Patent No. 2,816,228. Filed 21 May 1953. Serial No. 356,407. Search in Google Scholar

Hoerni, A. (1962). Method of manufacturing semiconductor devices. U.S. Patent 3 202 589, Mar. 20. Search in Google Scholar

Hyo-Chang, L. (2018). Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics. Appl. Phys. Rev., 5, 011108. https://doi.org/10.1063/1.501200110.1063/1.5012001 Search in Google Scholar

Ishikawa, D., Hasegawa, S. (2019). Development of removable hollow cathode discharge apparatus for sputtering solid metals. J. Spectrosc., 2019, 7491671. DOI: 10.1155/2019/7491671.10.1155/2019/7491671 Search in Google Scholar

Jacobi, W. (1951). Switching device. US Patent No. 2,753,489, 3 July 1956. Filed 29 November 1951. Serial No. 258,774, issued to Siemens & Halske Aktiengesellschaft. Search in Google Scholar

Karatodorov, S. I. (2017). Combined plasma source for emission spectroscopy: laser-induced plasma in hollow cathode discharge. Dr. Thesis. Institute of Solid State Physics, Bulgarian Academy of Sciences. 132 pp. Karatodorov/publication/322661198_Combined_Plasma_Source_for_Emission_Spectroscopy_Laser-Induced_Plasma_in_Hollow_Cathode_Discharge/links/5a673b21aca2720266b44198/Combined-Plasma-Source-for-Emission-Spectroscopy-Laser-Induced-Plasma-in-Hollow-Ca thode-Discharge.pdf (accessed 20.04.2022). Search in Google Scholar

Kilby, J. (1958). Miniaturized electronic circuits. US Patent US3138743A. 23 June 1964. Filed 6 February 1959. (Device was demonstrated in September 1958 to Texas Instruments management). Search in Google Scholar

Lark-Horovitz, K., Bentor, S., Davis, R. E.(1952). Photoelectric and thermo-electric device utilizing semiconducting material. U.S. Patent 2 588 254, 4 March 1952. Filed 9 May 1950, No. 161,002. Search in Google Scholar

Lehovec, K. (Sprague Electric Company). Multiple semiconductor assembly. US Patent No. US3029366A, 10 April 1962. Filed 22 April 1959. No. 808,249. Search in Google Scholar

Looker, Q. (2014). Fabrication Process Development for High-Purity Germanium Radiation Detectors with Amorphous Semiconductor Contacts. PhD dissertation. University of California, Berkeley. https://escholarship.org/content/qt1d14c7t8/qt1d14c7t8_noSplash_d8581bc67bbfabef97cb5a90208c0d28.pdf (accessed 12.03.2022). Search in Google Scholar

Masamba, W. R., Smith, B. W., Krupa, R. J., Winefordner, J. D. (1988). Atomic and ionic fluorescence in an inductively coupled plasma using hollow cathode lamps pulsed at high currents as excitation sources. Appl. Spectrosc., 42, 872–878. https://doi.org/10.1366/0003702884428851 (accessed 12.03.2022).10.1366/0003702884428851 Search in Google Scholar

Momentive products data: Permeability of Fused Quartz. www.momentive.com/en-us/categories/quartz/permeability (accessed 12.03.2022). Search in Google Scholar

Moyer, J. W. (1958). Method of making junction semiconductor unit. U.S. Patent 2 842 466, 8 July 1958. Filed 15 June 1954. No. 436,816. Search in Google Scholar

Norman, R., Last, J., Haas, I. (1960). Solid-state micrologic elements. In: IEEE International Solid-State Circuits Conference, Philadelphia, 10–12 February 1960. III, pp. 82–83. DOI:10.1109/ISSCC.1960.115726410.1109/ISSCC.1960.1157264 Search in Google Scholar

Ohl, R. S. (1949). Semiconductor translating devices. U.S. Patent 2 750 54, 12 June 1956. Filed 27 April 1949. No. 89,969. Search in Google Scholar

Okumura, T. (2010). Inductively Coupled Plasma Sources and Applications. Hindawi Publishing Corporation. Phys. Res. Int., 2010, 164249. DOI: 10.1155/2010/164249.10.1155/2010/164249 Search in Google Scholar

Pfann, W. G. (1952). Semiconductor signal translating device. U.S. Patent by Bell Telephone Laboratories Inc, Filed No 2597 028 at 11.10.1949 as US120661A, and as US120662A at 09.10.1951, then published as US2570978A Search in Google Scholar

Pittaway, L. (1970). Ion Gauges. US Patent, 29.02.1969 priority to Philips corp GB5300769, published 26.06.1973 as US3742343A. Search in Google Scholar

Plasek, M. L., Jorns, B., Choueiri, E. Y., Polk, J. E. (2012). Exploration of RF-Controlled High Current DensityHollow Cathode Concepts. Princeton University publications. https://alfven.princeton.edu/publications/plasek-jpc-2012-4083 (accessed 12.03.2022).10.2514/6.2012-4083 Search in Google Scholar

Plasek, M. L., Wordingham, C. J., Choueiri, E. Y., Polk, J. E. (2013). Modeling and Development of the RF-Controlled Hollow Cathode Concept. doi: 10.2514/6.2013-4036. https://arc.aiaa.org/doi/10.2514/6.2013-4036 (accessed 12.03.2022). Search in Google Scholar

Prohaska, T., Irrgeher, J. Zitek, A., Jakubowski, N. (2005). Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Royal Society of Chemistry. 666 pp. Search in Google Scholar

Reliance Precision Ltd. Clean Assembly and Manufacturing Solutions for the Scientific, Medical and Analytical Industries, p. 11. www.reliance.co.uk/wp-content/uploads/2017/03/SPSI3-Scientific-Issue-B-web.pdf (accessed 12.03.2022). Search in Google Scholar

Rose, P. H., Ryding, G. (2006). Concepts and designs of ion implantation equipment for semiconductor processing. Rev. Sci. Instrum., 77, 111101. doi.org/10.1063/1.235457110.1063/1.2354571 Search in Google Scholar

Sah, C. T. (1988). Evolution of the MOS transistor. From concept to VLSI. Proc. IEEE, 76, 1280.10.1109/5.16328 Search in Google Scholar

Saxena, A. (2009). Invention of integrated circuits: Untold important facts. World Scientific Publishing Company 564 pp..10.1142/6850 Search in Google Scholar

Shockley, W. (1954). Forming semiconductive devices by ionic bombardment. U.S. Patent 2 787 564, 2 April 1957. Filed 28 October 1954. No. 465,393. Search in Google Scholar

Sidenius, G. (1965). The high temperature hollow cathode ion source. Nucl. Instrum. Meth., 38, 19–22.10.1016/0029-554X(65)90096-0 Search in Google Scholar

Sparks, M., Teal, G. K. (1953). Method of Making P-N Junctions in Semiconductor Materials. U.S. Patent 2631356. Filed 15 June 1950. Issued 17 March 1953. Search in Google Scholar

Steward, S. A. (1983). Review of hydrogen isotope permeability through materials. www.osti.gov/servlets/purl/5277693/ (accessed 12.03.2022).10.2172/5277693 Search in Google Scholar

Sziklai, G. C. (1956). Multielement semiconductor devices. U.S. Patent 2 735 948, 21 February 1956. Filed 21 January 1953. No. 332,459. Search in Google Scholar

Taylor, S., Gibson, J. (2008). Prediction of the effects of imperfect construction of a QMS filter. J. Mass Spectr., 43, 609–616. DOI: 10.1002/jms.1356.10.1002/jms.135618076125 Search in Google Scholar

Tarui, Y. (1959). Japanese Patent Shōwa, 34-6175. Japan Patent Office 1959. Filed 26 March 1957. Search in Google Scholar

Turek, M., Drozdziel, A., Pyszniak, K., Maczka, D., Slowinski, B. (2013). Production of doubly charged ions using a hollow cathode ion source with an evaporator. Acta Phys. Pol. A, 123 (5) (Proceedings of the IX International Conference ION 2012, Kazimierz Dolny, Poland, 25–28 June 2012). Search in Google Scholar

Walther, S. R., Pedersen, B. O., McKenna, C. M. (1991). Ion sources for commercial ion implanter applications. Conference Record of the IEEE Particle Accelerator Conference. DOI: 10.1109/PAC.1991.164876. https://accelconf.web.cern.ch/p91/PDF/PAC1991_2088.PDF (accessed 12.03.2022). Search in Google Scholar

Wieser M.E., Brand W.A. (2013). Isotope Ratio Studies Using Mass Spec-trometry. Inductively coupled plasma. In: Encyclopedia of Spectroscopy and Spectrometry (3 edn.). Oxford, London, San-Diego, Cambridge, USA, pp. 488–500.10.1016/B978-0-12-409547-2.05243-4 Search in Google Scholar

Williams, J. M., Klepper, C. C., Chivers, D. J., Hazelton, R. C., Freeman, J. H. (2008). Operation and applications of the boron cathodic arc ion source. AIP Conf. Proc., 1066, 469–472. https://doi.org/10.1063/1.3033664 (accessed 12.03.2022).10.1063/1.3033664 Search in Google Scholar

Wilson, A. H. (1965). The Theory of Metals (2nd edn.). Cambridge University Press. 345 pp. Search in Google Scholar

Winchester, M. R., Paylinga, R. (2004). Radio-frequency glow discharge spectrometry: A critical review. Spectrochimica Acta Part B, 59, 607–666. DOI:10.1016/j.sab.2004.02.013.10.1016/j.sab.2004.02.013 Search in Google Scholar

Woodyard, J. R. (1944). Nonlinear circuit device utilizing germanium. U.S.US Patent filed 02.06.1944 by Sperry Group, granted 14.11.1950 as US538404A, published as US2530110A Search in Google Scholar

eISSN:
2255-890X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Allgemein, Mathematik, Allgemeines