Uneingeschränkter Zugang

Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels


Zitieren

1. A. Duggal and J. Minnebo, ‘The Floating Production, Storage and Offloading system – past, present and future’, in Offshore Technology Conference, Houston, Texas, USA, May 05, 2020, 2020, doi.org/10.4043/30514-MS.Open DOISearch in Google Scholar

2. M. M. L. Reis and W. L. R. Gallo, ‘Study of waste heat recovery potential and optimization of the power production by an organic Rankine cycle in an FPSO unit’, Energy Convers. Manag., vol. 157, pp. 409–422, 2018, doi.org/10.1016/j.enconman.2017.12.015.Open DOISearch in Google Scholar

3. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units’, Pol. Marit. Res., vol. 26, no. 3, pp. 181–187, 2019, doi.org/10.2478/pomr-2019-0059.Open DOISearch in Google Scholar

4. M. Aligoodarz, M. Soleimanitehrani, H. Karrabi, and F. Ehsaniderakhshan, ‘Numerical simulation of SGT-600 gas turbine combustor, flow characteristics analysis, and sensitivity measurement with respect to the main fuel holes diameter’, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., vol. 230, no. 13, pp. 2379–2391, 2016, doi.org/10.1177/0954410015625663.Open DOISearch in Google Scholar

5. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products’, Pol. Marit. Res., vol. 26, no. 4, pp. 149–156, 2019, http://doi.org/10.2478/pomr-2019-0077, doi.org/10.2478/pomr-2019-0077.Open DOISearch in Google Scholar

6. J. A. Vidoza, J. G. Andreasen, F. Haglind, M. M. L. dos Reis, and W. Gallo, ‘Design and optimization of power hubs for Brazilian off-shore oil production units’, Energy (Oxf.), vol. 176, pp. 656–666, 2019.10.1016/j.energy.2019.04.022Search in Google Scholar

7. C. Waldhelm, ‘Application of gas turbines on floater vessel for power generation service’, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery, 1998.10.1115/98-GT-277Search in Google Scholar

8. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine’, Pol. Marit. Res., vol. 27, no. 3, pp. 89–99, 2020.10.2478/pomr-2020-0050Search in Google Scholar

9. Directive 2013/39/EU of the European Parliament and of the Council, Europa.eu, 2008. [Online]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF. [Accessed: 05 Mar 2021].Search in Google Scholar

10. S. Di Iorio, A. Magno, E. Mancaruso, and B. M. Vaglieco, ‘Analysis of the effects of diesel/methane dual fuel combustion on nitrogen oxides and particle formation through optical investigation in a real engine’, Fuel Process. Technol., vol. 159, pp. 200–210, 2017.10.1016/j.fuproc.2017.01.009Search in Google Scholar

11. S. I. Serbin, ‘Modeling and experimental study of operation process in a gas turbine combustor with a plasma-chemical element’, Combust. Sci. Technol., vol. 139, no. 1, pp. 137–158, 1998.10.1080/00102209808952084Search in Google Scholar

12. B. T. Diasamidze, S. V. Vilkul, and S. I. Serbin, ‘Theoretical investigations of a dual-fuel low-emission gas turbine combustor’, NTU KhPI Bull. Power Heat Eng. Process. Equip., no. 1, pp. 27–33, 2020.10.20998/2078-774X.2019.01.04Search in Google Scholar

13. C. K. Law, Combustion Physics. Cambridge, England: Cambridge University Press, 2010.Search in Google Scholar

14. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3rd ed. Berlin, Germany: Springer, 2013.Search in Google Scholar

15. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London: Academic Press.Search in Google Scholar

16. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Investigations of the working process in a ‘lean-burn’ gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 39, no. 12, pp. 3331–3335, 2011.Search in Google Scholar

17. D. Choudhury, Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Incorporated, 1973.Search in Google Scholar

18. B. Magnussen, ‘On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow’, in 19th Aerospace Sciences Meeting, St Louis, MO, USA,1981.10.2514/6.1981-42Search in Google Scholar

19. S. B. Pope, ‘Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation’, Combust. Theory Model., vol. 1, no. 1, pp. 41–63, 1997.10.1080/713665229Search in Google Scholar

20. F. Wang, Y. Huang, and T. Deng, ‘Gas turbine combustor simulation with various turbulent combustion models’, in ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8–12, 2009, Orlando, Florida, USA, Volume 2: Combustion, Fuels and Emissions, 2009.10.1115/GT2009-59198Search in Google Scholar

21. A. C. Benim, S. Iqbal, W. Meier, F. Joos, and A. Wiedermann, ‘Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor’, Appl. Therm. Eng., vol. 110, pp. 202–212, 2017.10.1016/j.applthermaleng.2016.08.143Search in Google Scholar

22. Turbulence, heat and mass transfer: Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer, ed. by K. Hanjalic, Palermo, Italy, 24-27 September, 2012.Search in Google Scholar

23. I. V. Novosselov and P. C. Malte, ‘Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors’, J. Eng. Gas Turbines Power, vol. 130, no. 2, 2008.10.1115/1.2795787Search in Google Scholar

24. I. Matveev, S. Matveeva, S. Serbin, ‘Design and Preliminary Test Results of the Plasma Assisted Tornado Combustor’, Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA 2007-5628, vol. 6, 2007, pp. 6091-6098.10.2514/6.2007-5628Search in Google Scholar

25. G. M. Faeth, ‘Structure and atomization properties of dense turbulent sprays’, Symp. (Int.) Combust., vol. 23, no. 1, pp. 1345–1352, 1991.Search in Google Scholar

26. S. James, M. Anand, and S. Pope, ‘The Lagrangian PDF transport method for simulations of gas turbine combustor flows’, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indiannapolis, Indiana, USA, 2002.10.2514/6.2002-4017Search in Google Scholar

27. G. Faeth, ‘Spray combustion models - A review’, in 17th Aerospace Sciences Meeting, New Orleans, USA, 1979.10.2514/6.1979-293Search in Google Scholar

28. W. A. Fiveland and A. S. Jamaluddin, ‘Three-dimensional spectral radiative heat transfer solutions by the discrete-ordinates method’, J. Thermophys. Heat Transf., vol. 5, no. 3, pp. 335–339, 1991.10.2514/3.268Search in Google Scholar

29. S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz, ‘Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 44, no. 12, pp. 2960–2964, 2016.Search in Google Scholar

30. I. B. Matveev, S. I. Serbin, V. V. Vilkul, and N. A. Goncharova, ‘Synthesis gas afterburner based on an injector type plasma-assisted combustion system’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3974–3978, 2015.Search in Google Scholar

31. I. Matveev, S. Serbin, T. Butcher, N. Tutu, “Flow Structure investigation in a “Tornado” Combustor,” Collection of Technical Papers - 4th International Energy Conversion Engineering Conference, vol. 2, 2006, pp. 1001-1013.10.2514/6.2006-4141Search in Google Scholar

32. S. Serbin., A. Kozlovskyi, K. Burunsuz, ‘Influence of plasma-chemical products on process stability in a low-emission gas turbine combustion chamber’, International Journal of Turbo and Jet Engines, 2021. Available from: https://doi.org/10.1515/tjeng-2020-0046.10.1515/tjeng-2020-0046Search in Google Scholar

33. G. F. Romanovsky, S. I. Serbin, V. M. Patlaychuk, Modern Gas Turbine Units of Russia and Ukraine. Mikolayiv: NUK, 2005.Search in Google Scholar

34. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Plasma-assisted reforming of natural gas for GTL: Part II—modeling of the methane–oxygen reformer’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3964–3968, 2015.Search in Google Scholar

35. S. I. Serbin, I. B. Matveev, and N. A. Goncharova, ‘Plasma-assisted reforming of natural gas for GTL—part I’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 42, no. 12, pp. 3896–3900, 2014.Search in Google Scholar

36. I. B. Matveev, A. A. Tropina, S. I. Serbin, and V. Y. Kostyuk, ‘Arc Modeling in a Plasmatron Channel’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 36, no. 1, pp. 293–298, 2008.10.1109/TPS.2007.913876Search in Google Scholar

37. I. Matveev, S. Serbin, A. Mostipanenko, ‘Numerical Optimization of the “Tornado” Combustor Aerodynamic Parameters’, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2007-391, 2007.10.2514/6.2007-391Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie