Uneingeschränkter Zugang

Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice


Zitieren

1. Narodowy Program Zwalczania Chorób Nowotworowych. http://profilaktykaraka.coi.waw.pl/, access: February 2020 [in Polish] Search in Google Scholar

2. Didkowska J, Wojciechowska U. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy. http://onkologia.org.pl/k/epidemiologia/, access: April 2020 [in Polish] Search in Google Scholar

3. Dz.U. 2017 poz. 884. Obwieszczenie Ministra Zdrowia z dnia 3 kwietnia 2017 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Zdrowia w sprawie warunków bezpiecznego stosowania promieniowania jonizującego dla wszystkich rodzajów ekspozycji medycznej [in Polish] Search in Google Scholar

4. American College of Radiology. Mammography Quality Control Manual. 1999 Search in Google Scholar

5. Huda W, Sajewicz AM, Ogden KM, Scalzetti EM, Dance DR. How Good Is the ACR Accreditation Phantom for Assessing Image Quality in Digital Mammography. Acad Radiol. 2002;9(7):764–772. https://doi.org/10.1016/S1076-6332(03)80345-810.1016/S1076-6332(03)80345-8 Search in Google Scholar

6. Fabiszewska E, Grabska I, Pasicz K. The threshold contrast thickness evaluated with different CDMAM phantoms and software. Nukleonika. 2016;61(1):53-59. https://doi.org/10.1515/nuka-2016-000410.1515/nuka-2016-0004 Search in Google Scholar

7. Fujita H, Tsai DY, Itoh T, et al. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging. 1992;11(1):34-39. https://doi.org/10.1109/42.12690810.1109/42.12690818218354 Search in Google Scholar

8. Hoheisel M, Batz L, Mertelmeier T, Giersch J, Korn A. Modulation transfer function of a selenium-based digital mammography system. IEEE Symposium Conference Record Nuclear Science 2004, Rome, 2004;6:3589-3593. https://doi.org/10.1109/NSSMIC.2004.146666010.1109/NSSMIC.2004.1466660 Search in Google Scholar

9. Carton AK, Vandenbroucke D, Struye L, et al. Validation of MTF measurement for digital mammography quality control. Med Phys. 2005;32(6):1684-1695. https://doi.org/10.1118/1.192166710.1118/1.192166716013727 Search in Google Scholar

10. Samei E, Ranger NT, Dobbins JT 3rd, Chen Y. Intercomparison of methods for image quality characterization. I. Modulation transfer function. Med Phys. 2006;33(5):1454-1465. https://doi.org/10.1118/1.218881610.1118/1.218881616752580 Search in Google Scholar

11. Narváez M, Graffigna JP, Gomez ME, Romo R. Application of Oversampling to obtain the MTF of Digital Radiology Equipment. J Phys: Conf Ser. 2016;705:012057. https://doi.org/10.1088/1742-6596/705/1/01205710.1088/1742-6596/705/1/012057 Search in Google Scholar

12. Williams MB, Mangiafico PA, Simoni PU. Noise power spectra of images from digital mammography detectors. Med Phys. 1999;26:1279-1293. https://doi.org/10.1118/1.59862310.1118/1.59862310435530 Search in Google Scholar

13. García-Mollá R, Linares R, Ayala R. Study of DQE dependence with beam quality on GE Essential mammography flat panel. Journal of Applied Clinical Medical Physics. 2011;12(1). https://doi.org/10.1120/jacmp.v12i1.317610.1120/jacmp.v12i1.3176571858821330969 Search in Google Scholar

14. Ortenzia O, D’Alessio A, Noferini L, Ghetti C. Characterization of two CT systems using a channelized hotelling observer and NPS metric. Rad Prot Dos. 2020;189(2):224-233. https://doi.org/10.1093/rpd/ncaa03410.1093/rpd/ncaa03432161966 Search in Google Scholar

15. Dobbins JT 3rd, Ergun DL, Rutz L, Hinshaw DA, Blume H. Clark DC, DQE(f) of four generations of computed radiography acquisition devices. Med Phys. 1995;22:1581-1593. https://doi.org/10.1118/1.59762710.1118/1.5976278551982 Search in Google Scholar

16. Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30(4):608-622. https://doi.org/10.1118/1.156128510.1118/1.156128512722813 Search in Google Scholar

17. Marshall NW. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems. Phys Med Biol. 2007;52:5545. https://doi.org/10.1088/0031-9155/52/18/00610.1088/0031-9155/52/18/00617804881 Search in Google Scholar

18. Marshall NW. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems. Phys. Med. Biol. 2009; 54 2845, https://doi.org/10.1088/0031-9155/54/9/01710.1088/0031-9155/54/9/01719384004 Search in Google Scholar

19. Samei E, Murphy S, Christianson, O. DQE of wireless digital detectors: Comparative performance with differing filtration schemes. Med Phys. 2013;40:081910. https://doi.org/10.1118/1.481329810.1118/1.481329823927324 Search in Google Scholar

20. Marshall NW, van Ongeval C, Bosmans H. Performance evaluation of a retrofit digital detector-based mammography system. Phys Med. 2016;32(2):312-322. https://doi.org/10.1016/j.ejmp.2016.01.00210.1016/j.ejmp.2016.01.00226803225 Search in Google Scholar

21. Borg M. Application of the European Protocol in the evaluation of digital mammography units with tungsten target tubes. Rad Prot Dos. 2019;184(4):507-518. https://doi.org/10.1093/rpd/ncz04410.1093/rpd/ncz04430986308 Search in Google Scholar

22. International Electrotechnical Commission. Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1-2: Determination of the detective quantum efficiency - Detectors used in mammography. IEC 62220-1-2:2007 Search in Google Scholar

23. Williams L. The Optical Transfer Function of Imaging Systems. Institute of Physics. Bristol. 1999 Search in Google Scholar

24. Viallefont-Robinet F, Helder D, Fraisse R, et alS. Comparison of MTF measurements using edge method: towards reference data set. Opt Express. 2018;26:33625-33648. https://doi.org/10.1364/OE.26.03362510.1364/OE.26.03362530650795 Search in Google Scholar

25. Greer PB, Van Doorn T. Evaluation of an algorithm for the assessment of the MTF using an edge method. Med Phys. 2000;27:2048-2059. https://doi.org/10.1118/1.128868210.1118/1.128868211011732 Search in Google Scholar

26. Dobbins JT 3rd, Samei E, Ranger NT, Chen Y. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys. 2006;33(5):1466-1475. https://doi.org/10.1118/1.218881910.1118/1.218881916752581 Search in Google Scholar

27. Siemens Healthcare GmbH. Online tool for the simulation of X-ray Spectra. https://www.oem-products.siemens-healthineers.com/xray-spectra-simulation. access: april 2020 Search in Google Scholar

28. Joint Committee for Guides in Metrology. Evaluation of the measurement data - Guide to the expression of uncertainty in measurement (GUM), 2008 Search in Google Scholar

29. Buhr E, Günther-Kohfahl S, Neitzel U. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med Phys. 2003;30:2323-31. https://doi.org/10.1118/1.159867310.1118/1.159867314528954 Search in Google Scholar

30. Illers H, Buhr E, Hoeschen C. Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62220-1. Rad Prot Dos. 2005;114:39-44. https://doi.org/10.1093/rpd/nch50710.1093/rpd/nch50715933079 Search in Google Scholar

31. Monnin P, Gutierrez D, Bulling S, Guntern D, Verdun FR. A comparison of the performance of digital mammography systems. Med Phys. 2007;34(3):906-914. https://doi.org/10.1118/1.243207210.1118/1.243207217441236 Search in Google Scholar

32. Oborska - Kumaszyńska D, Wiśniewska-Kubka S. Ocena ilościowa parametrów cyfrowych detektorów radiologicznych obrazowania diagnostycznego - cz.2. Inżynier i Fizyk Medyczny. 2013;2(1):25-31. Search in Google Scholar

33. Oberhofer N, Fracchetti A, Nassivera E, Valentini A, Moroder E. Comparison of Two Novel FFDM Systems with Different a-Se Detector Technology: Physical Characterization and Phantom Contrast Detail Evaluation in Clinical Conditions. In: Martí J., Oliver A., Freixenet J., Martí R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_6210.1007/978-3-642-13666-5_62 Search in Google Scholar

34. Hoheisel M, Batz L, Mertelmeier T, Giersch J, Korn A. Modulation transfer function of a selenium-based digital mammography system. IEEE Transactions on Nuclear Science. 2006;53(3):1118-1122. https://doi.org/10.1109/TNS.2006.87495310.1109/TNS.2006.874953 Search in Google Scholar

35. Greiter MB, Hoeschen Ch. Mobile measurement setup according to IEC 62220-1-2 for DQE determination on digital mammography systems. Proc SPIE 7622, Medical Imaging 2010: Physics of Medical Imaging, 76224P. https://doi.org/10.1117/12.84419610.1117/12.844196 Search in Google Scholar

36. Samei E, Ranger N, Mackenzie A, Honey I, Dobbins J, Ravin C, Detector or System? Extending the Concept of Detective Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems. Radiology. 2009;249:926-37. https://doi.org/10.1148/radiol.249207173410.1148/radiol.2492071734269181019011189 Search in Google Scholar

37. Samei E, Ranger NT, MacKenzie A, Honey ID, Dobbins JT 3rd, Ravin CE. Effective DQE (eDQE) and speed of digital radiographic systems: an experimental methodology. Med Phys. 2009;36(8):3806-17. https://doi.org/10.1088/1361-6560/aaa30710.1088/1361-6560/aaa30729260730 Search in Google Scholar

38. Salvagnini E, Bosmans H, Struelens L, Marshall NW, Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography. Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83130H. https://doi.org/10.1117/12.91119310.1117/12.911193 Search in Google Scholar

39. Wood TJ, Moore CS, Saunderson JR, Beavis AW, Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems. Phys Med Biol. 2018;39(2):025025. https://doi.org/10.1088/1361-6560/aaa30710.1088/1361-6560/aaa307 Search in Google Scholar

40. Bor D, Guven A, Yusuf AR, et al. A modified formulation of eDQE for digital radiographic imaging. Rad Phys Chem. 2019;156:614. https://doi.org/10.1016/j.radphyschem.2018.10.01010.1016/j.radphyschem.2018.10.010 Search in Google Scholar

41. Fabiszewska E, Wysocka-Rabin A, Dobrzyńska M, Skrzyński W, Pasicz K. Application of DQE for quantitative assessment of detectors to estimate AEC efficiency in digital mammography. Pol J Med Phys Eng. 2021;27(1):51-56. https://doi.org/10.2478/pjmpe-2021-000710.2478/pjmpe-2021-0007 Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik