Uneingeschränkter Zugang

Time requirements in closed and open batch distillation arrangements for separation of a binary mixture


Zitieren

1. Sørensen, E. & Skogestad, S. (1996). Comparison of regular and inverted batch distillation, Chem. Eng. Sci. 51(22), 4949-4962. DOI: 10.1016/0009-2509(96)00287-4.10.1016/0009-2509(96)00287-4Search in Google Scholar

2. Klein, A. & Repke, J.U. (2009). Regular and inverted batch process structures for pressure swing distillation: a case study, Asia-Pac. J. Chem. Eng. 4(6), 893-904. DOI: 10.1002/apj.344.10.1002/apj.344Search in Google Scholar

3. Masoud, A.Z. & Mujtaba, I.M. (2009). Effect of operating decisions on the design and energy consumption of inverted batch distillation column, Chem. Prod. Proc. Model., 4(1), Article 35. DOI: 10.2202/1934-2659.1275.10.2202/1934-2659.1275Search in Google Scholar

4. Davidyan, A.G., Kiva, V.N., Meski, G.A. & Morari, M. (1994). Batch distillation in a column with a middle vessel, Chem. Eng. Sci. 49(18), 3033-3051. DOI: 10.1016/0009-2509(94) E0083-3.Search in Google Scholar

5. Meski, G.A. & Morari, M. (1995). Design and operation of a batch distillation column with a middle vessel, Comput. Chem. Eng. 19, 597-602. DOI: 10.1016/0098-1354(95)87100-4.10.1016/0098-1354(95)87100-4Search in Google Scholar

6. Barolo, M., Guarise, G.B., Rienzi, S.A., Trotta, A. & Macchietto, S. (1996). Running batch distillation in a column with a middle vessel, Ind. Eng. Chem. Res. 35(12), 4612-4618. DOI: 10.1021/ie960268s.10.1021/ie960268sSearch in Google Scholar

7. Cui, X.B., Yang, Z.C., Shao, H.Q. & Qu, H.M. (2001). Batch distillation in a column with a cold middle vessel for heat-sensitive compounds, Ind. Eng. Chem. Res. 40(3), 879-884. DOI: 10.1021/ie000491w.10.1021/ie000491wSearch in Google Scholar

8. Warter, M., Demicoli, D. & Stichlmair, J. (2004). Operation of a batch distillation column with a middle vessel: experimental results for the separation of zeotropic and azeotropic mixtures, Chem. Eng. Process. 43(3), 263-272. DOI: 10.1016/ S0255-2701(03)00122-3.10.1016/S0255-2701(03)00122-3Search in Google Scholar

9. Gruetzmann, S., Fieg, G. & Kapala, T. (2006). Theoretical analysis and operating behaviour of a middle vessel batch distillation with cyclic operation, Chem. Eng. Process. 45(1), 46-54. DOI: 10.1016/j.cep.2005.05.005.10.1016/j.cep.2005.05.005Search in Google Scholar

10. Gruetzmann, S. & Fieg, G. (2008). Startup operation of middle-vessel batch distillation column: modeling and simulation, Ind. Eng. Chem. Res. 47(3), 813-824. DOI: 10.1021/ ie070667v.10.1021/ie070667vSearch in Google Scholar

11. Babu, G., Aditya, R. & Jana, A.K. (2012). Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use, Energy 45(1), 626-633. DOI: 10.1016/j.energy.2012.07.035.10.1016/j.energy.2012.07.035Search in Google Scholar

12. Edreder, E.A., Mujtaba, I.M. & Emtir, M.M. (2012). Simulation of middle vessel batch reactive distillation column: application to hydrolysis of methyl lactate, Chem. Eng. Trans. 29, 595-600. DOI: 10.3303/CET1229100.Search in Google Scholar

13. Monroy-Loperena, R. & Alvarez-Ramí rez, J. (2012). Dual composition control in continuous, middle-vessel distillation columns, with a draw stream in the middle vessel, Ind. Eng. Chem. Res. 51(12), 4624-4631. DOI: 10.1021/ie203018k.10.1021/ie203018kSearch in Google Scholar

14. Mori, H., Ito, C., Oda, A. & Aragaki, T. (1999). Total refl ux simulation of packed column distillation, J. Chem. Eng. Jpn. 32(1), 69-75. DOI: 10.1252/jcej.32.69.10.1252/jcej.32.69Search in Google Scholar

15. Hegely, L. & Lang, P. (2011). Comparison of closed and open operation modes of batch distillation, Chem. Eng. Trans. 25, 695-700. DOI: 10.3303/CET1125116.Search in Google Scholar

16. Skouras, S. & Skogestad, S. (2004). Time requirements for heteroazeotropic distillation in batch columns, Comput. Chem. Eng. 28(9), 1689-1700. DOI: 10.1016/j.compchemeng. 2004.01.004.Search in Google Scholar

17. Skouras, S. & Skogestad, S. (2004). Time (energy) requirements in closed batch distillation arrangements, Comput. Chem. Eng. 28(5), 829-837. DOI: 10.1016/j.compchemeng.2004.02.021.10.1016/j.compchemeng.2004.02.021Search in Google Scholar

18. Bai, P., Hua, C., Li, X. & Yu, K.T. (2005). Cyclic total refl ux batch distillation with two refl ux drums, Chem. Eng. Sci. 60(21), 5845-5851. DOI: 10.1016/j.ces.2005.05.040.10.1016/j.ces.2005.05.040Search in Google Scholar

19. Bai, P., Song, S., Sheng, M. & Li, X. (2010). A dynamic modeling for cyclic total refl ux batch distillation, Chinese. J. Chem. Eng. 18(4), 554-561. DOI: 10.1016/S1004-9541(10)60258-3.10.1016/S1004-9541(10)60258-3Search in Google Scholar

20. Jiang, Z. & Bai, P. (2011). Overhead concentration platform of total withdrawal operation in cyclic total refl ux batch distillation, Chinese. J. Chem. Eng. 19(4), 598-602. DOI: 10.1016/S1004-9541(11)60028-1.10.1016/S1004-9541(11)60028-1Search in Google Scholar

21. Bortolini, P. & Guarise, G.B. (1970). A new practice of batch distillation, Quad. dell’Ing. Chim. Ital., 6(9), 150-157.Search in Google Scholar

22. Treybal, R.E. (1970). A simple method for batch distillation, Chem. Eng. 77, 95-101.Search in Google Scholar

23. Wittgens, B., Litto, R., Sørensen, E. & Skogestad, S. (1996). Total refl ux operation of multivessel batch distillation, Comput. Chem. Eng. 20, 1041-1046. DOI: 10.1016/0098-1354(96)00181-0.10.1016/0098-1354(96)00181-0Search in Google Scholar

24. Skogestad, S., Wittgens, B., Litto, R. & Sørensen, E. (1997). Multivessel batch distillation, AIChE J. 43(4), 971-978. DOI: 10.1002/aic.690430412.10.1002/aic.690430412Search in Google Scholar

25. Hasebe, S., Noda, M. & Hashimoto, I. (1997). Optimal operation policy for multi-effect batch distillation system, Comput. Chem. Eng. 21, 1221-1226. DOI: 10.1016/S0098-1354(97)87669-7.10.1016/S0098-1354(97)87669-7Search in Google Scholar

26. Furlonge, H., Pantelides, C. & Sørensen, E. (1999). Optimal operation of multivessel batch distillation columns, AIChE J. 45(4), 781-801. DOI: 10.1002/aic.690450413.10.1002/aic.690450413Search in Google Scholar

27. Hasebe, S., Noda, M. & Hashimoto, I. (1999). Optimal operation policy for total refl ux and multi-effect batch distillation systems, Comput. Chem. Eng. 23(4), 523-532. DOI: 10.1016/S0098-1354(98)00290-7.10.1016/S0098-1354(98)00290-7Search in Google Scholar

28. Wittgens, B. & Skogestad, S. (2000). Closed operation of multivessel batch distillation: Experimental verification, AIChE J. 46(6), 1209-1217. DOI: 10.1002/aic.690460613.10.1002/aic.690460613Search in Google Scholar

29. Kurooka, T., Nishitani, H., Hasebe, S. & Hashimoto, I. (2001). Energy conservation by multi-effect batch distillation system, J. Chem. Eng. Jpn. 34(9), 1141-1146. DOI: 10.1252/ jcej.34.1141.10.1252/jcej.34.1141Search in Google Scholar

30. Mahmud, M.T., Mujtaba, I.M. & Emtir, M. (2008). Optimal design and operation of multivessel batch distillation column with fixed product demand and strict product specifications, Comp. Aid. Chem. Engin., 25(1), 253-258. DOI: 10.1016/ S1570-7946(08)80047-8.10.1016/S1570-7946(08)80047-8Search in Google Scholar

31. Gruetzmann, S., Fieg, G. & Skogestad, S. (2009). Experimental and theoretical studies on the start-up operation of a multivessel batch distillation column, Ind. Eng. Chem. Res. 48(11), 5336-5343. DOI: 10.1021/ie800962b.10.1021/ie800962bSearch in Google Scholar

32. Mujtaba, I. (2004). Batch Distillation. Design and operation. London, UK: Imperial College Press. 10.1142/p319Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik