Deuterium isotope effects in mechanistic studies of biotransformations of l-tyrosine and p-hydroxyphenylpyruvic acid catalyzed by the enzyme l-phenylalanine dehydrogenase
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat., 28(9), 831–845.ScriverC. R.2007The PAH gene, phenylketonuria, and a paradigm shiftHum. Mutat289831845Search in Google Scholar
Williams, R. A., Mamotte, C. D. S., & Burnett, J. R. (2008). Phenylketonuria: An inborn error of phenylalanine metabolism. Clin. Biochem. Rev., 29(1), 31–41.WilliamsR. A.MamotteC. D. S.BurnettJ. R.2008Phenylketonuria: An inborn error of phenylalanine metabolismClin. Biochem. Rev2913141Search in Google Scholar
Hendriksz, C. J., & Walter, J. H. (2004). Update on phenylketonuria. Curr. Pediatr., 14(5), 400–406.HendrikszC. J.WalterJ. H.2004Update on phenylketonuriaCurr. Pediatr145400406Search in Google Scholar
Mitchell, G. A., Grompe, M., Lambert, M., & Tanguay, R. M. (2001) Hypertyrosinemia. In C. R. Scriver, A. L. Beaudet & W. S. Sly (Eds.), The metabolic and molecular bases of inherited disease. (8th ed., Vol. II, pp. 1777–1785). New York: McGraw-Hill.MitchellG. A.GrompeM.LambertM.TanguayR. M.2001HypertyrosinemiaInScriverC. R.BeaudetA. L.SlyW. S.(Eds.),The metabolic and molecular bases of inherited disease8th ed.II17771785New YorkMcGraw-HillSearch in Google Scholar
Brunhuber, N. M. W., Banerjee, A., Jacobs, W. R. Jr, & Blanchard, J. S. (1994). Cloning, sequencing, and expressing of Rhodococcusl-phenylalanine dehydrogenase. J. Biol. Chem., 269(23), 16203–16211.BrunhuberN. M. W.BanerjeeA.JacobsW. R.JrBlanchardJ. S.1994Cloning, sequencing, and expressing of Rhodococcusl-phenylalanine dehydrogenaseJ. Biol. Chem269231620316211Search in Google Scholar
Brunhuber, N. M. W., Thoden, J. B., Blanchard, J. S., & Vanhooke, J. L. (2000). Rhodococcusl-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry, 39(31), 9174–9187.BrunhuberN. M. W.ThodenJ. B.BlanchardJ. S.VanhookeJ. L.2000Rhodococcusl-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifityBiochemistry393191749187Search in Google Scholar
Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2002). Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Biochemistry, 41, 11390–11397.SeahS. Y. K.BrittonK. L.RiceD. W.AsanoY.EngelP. C.2002Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substratesBiochemistry411139011397Search in Google Scholar
Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2003). Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modelling. Eur. J. Biochem., 270, 4628–4634.SeahS. Y. K.BrittonK. L.RiceD. W.AsanoY.EngelP. C.2003Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modellingEur. J. Biochem27046284634Search in Google Scholar
Asano, Y., Yamada, A., Kato, Y., Yamaguchi, K., Hibino, Y., Hirai, K., & Kondo, K. (1990). Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem., 55(21), 5567–5571.AsanoY.YamadaA.KatoY.YamaguchiK.HibinoY.HiraiK.KondoK.1990Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymesJ. Org. Chem552155675571Search in Google Scholar
Busca, P., Paradisi, F., Moynihan, E., Maguire, A. R., & Engel, P. C. (2004). Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesis. Org. Biomol. Chem., 2, 2684–2691.BuscaP.ParadisiF.MoynihanE.MaguireA. R.EngelP. C.2004Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesisOrg. Biomol. Chem226842691Search in Google Scholar
Hummel, W. E., Schmidt, E., Wandrey, C., & Kula, M.-R. (1986). l-Phenylalanine dehydrogenase from Brevibacterium sp. for production l-phenylalanine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol., 25(3), 175–185.HummelW. E.SchmidtE.WandreyC.KulaM.-R.1986l-Phenylalanine dehydrogenase from Brevibacterium sp. for production l-phenylalanine by reductive amination of phenylpyruvateAppl. Microbiol. Biotechnol253175185Search in Google Scholar
Sühnel, J. R. L., & Schowen, L. R. (1991). Theoretical basis for primary and secondary hydrogen isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 3–35). Boca Raton (FL): CRC Press.SühnelJ. R. L.SchowenL. R.1991Theoretical basis for primary and secondary hydrogen isotope effectsInCookP. F.(Ed.),Enzyme mechanism from isotope effects335Boca Raton (FL)CRC PressSearch in Google Scholar
Schowen, L. R. (1972). Mechanistic deductions from solvent isotope effect. Prog. Phys. Org. Chem., 9, 275–332.SchowenL. R.1972Mechanistic deductions from solvent isotope effectProg. Phys. Org. Chem9275332Search in Google Scholar
Jemielity, J., Kański, R., & Kańska, M. (2001). Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-l-phenylalanine. J. Label. Compd. Radiopharm., 44, 205–304.JemielityJ.KańskiR.KańskaM.2001Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-l-phenylalanineJ. Label. Compd. Radiopharm44205304Search in Google Scholar
Skowera, K., & Kańska, M. (2008). Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14. J. Label. Compd., 51, 321–324.SkoweraK.KańskaM.2008Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14J. Label. Compd51321324Search in Google Scholar
Pałka, K., & Kańska, M. (2012). Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of l-tyrosine and l-phenylalanine labeled with deuterium and tritium. Nukleonika, 57(3), 383–387.PałkaK.KańskaM.2012Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of l-tyrosine and l-phenylalanine labeled with deuterium and tritiumNukleonika573383387Search in Google Scholar
Gary, R., Bates, R. G., & Robinson, R. A. (1964). Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale. J. Phys. Chem., 68(12), 3806–3809.GaryR.BatesR. G.RobinsonR. A.1964Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scaleJ. Phys. Chem681238063809Search in Google Scholar
Kańska, M., Dragulska, S., Pająk, M., & Winnicka, E. (2015). Isotope effects in the hydroxylation of ltyrosine catalyzed by tyrosinase. J. Radioanal. Nucl. Chem., 305(2), 371–378.KańskaM.DragulskaS.PająkM.WinnickaE.2015Isotope effects in the hydroxylation of ltyrosine catalyzed by tyrosinaseJ. Radioanal. Nucl. Chem3052371378Search in Google Scholar
Parkin, D. W. (1991). Methods for determination of competitive and noncompetitive kinetics isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 269–290), Boca Raton (FL): CRC Press.ParkinD. W.1991Methods for determination of competitive and noncompetitive kinetics isotope effectsInCookP. F.(Ed.),Enzyme mechanism from isotope effects269290Boca Raton (FL)CRC PressSearch in Google Scholar
Papajak, E., Kwiecień, R. A., Rudziński, J., Sicińska, D., Kamiński, R., Szadkowski, Ł., Kurihara, T., Esaki, N., & Paneth, P. (2006). Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effects. Biochemistry, 45(19), 6012–6017.PapajakE.KwiecieńR. A.RudzińskiJ.SicińskaD.KamińskiR.SzadkowskiŁ.KuriharaT.EsakiN.PanethP.2006Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effectsBiochemistry451960126017Search in Google Scholar
Brunhuber, N. M. W., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol., 29(6), 415–467.BrunhuberN. M. W.BlanchardJ. S.1994The biochemistry and enzymology of amino acid dehydrogenasesCrit. Rev. Biochem. Mol. Biol296415467Search in Google Scholar
Wende, U., Koppelkam, M., Hummel, W., Sander, J., & Langenbeck, U. (1990). A new approach to the newborn screening for hyperphenylalaninemias: use of l-phenylalanine dehydrogenase and micrititer plates. Clin. Chim. Acta, 192(3), 165–170.WendeU.KoppelkamM.HummelW.SanderJ.LangenbeckU.1990A new approach to the newborn screening for hyperphenylalaninemias: use of l-phenylalanine dehydrogenase and micrititer platesClin. Chim. Acta1923165170Search in Google Scholar
Naghib, S. M., Rabee, M., Omidinia, E., & Khoshkenar, P. (2012). Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuria. Electroanalysis, 24, 407–417.NaghibS. M.RabeeM.OmidiniaE.KhoshkenarP.2012Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuriaElectroanalysis24407417Search in Google Scholar
Asano, Y., & Nakazawa, A. (1987). High yield synthesis of l-amino acids by phenylalanine dehydrogenase from Sporasacrina ureae. Agric. Biol. Chem., 51(7), 2035–2036.AsanoY.NakazawaA.1987High yield synthesis of l-amino acids by phenylalanine dehydrogenase from Sporasacrina ureaeAgric. Biol. Chem51720352036Search in Google Scholar
Vanhooke, J. L., Thoden, J. B., Brunhuber, N. M. W., Blanchard, J. S., & Holden, H. M. (1999). Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry, 38(8), 2326–2339.VanhookeJ. L.ThodenJ. B.BrunhuberN. M. W.BlanchardJ. S.HoldenH. M.1999Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanismBiochemistry38823262339Search in Google Scholar