Uneingeschränkter Zugang

Deuterium isotope effects in mechanistic studies of biotransformations of l-tyrosine and p-hydroxyphenylpyruvic acid catalyzed by the enzyme l-phenylalanine dehydrogenase

, ,  und   
02. Mai 2025

Zitieren
COVER HERUNTERLADEN

Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat., 28(9), 831–845. ScriverC. R. 2007 The PAH gene, phenylketonuria, and a paradigm shift Hum. Mutat 28 9 831 845 Search in Google Scholar

Williams, R. A., Mamotte, C. D. S., & Burnett, J. R. (2008). Phenylketonuria: An inborn error of phenylalanine metabolism. Clin. Biochem. Rev., 29(1), 31–41. WilliamsR. A. MamotteC. D. S. BurnettJ. R. 2008 Phenylketonuria: An inborn error of phenylalanine metabolism Clin. Biochem. Rev 29 1 31 41 Search in Google Scholar

Hendriksz, C. J., & Walter, J. H. (2004). Update on phenylketonuria. Curr. Pediatr., 14(5), 400–406. HendrikszC. J. WalterJ. H. 2004 Update on phenylketonuria Curr. Pediatr 14 5 400 406 Search in Google Scholar

Mitchell, G. A., Grompe, M., Lambert, M., & Tanguay, R. M. (2001) Hypertyrosinemia. In C. R. Scriver, A. L. Beaudet & W. S. Sly (Eds.), The metabolic and molecular bases of inherited disease. (8th ed., Vol. II, pp. 1777–1785). New York: McGraw-Hill. MitchellG. A. GrompeM. LambertM. TanguayR. M. 2001 Hypertyrosinemia In ScriverC. R. BeaudetA. L. SlyW. S. (Eds.), The metabolic and molecular bases of inherited disease 8th ed. II 1777 1785 New York McGraw-Hill Search in Google Scholar

Brunhuber, N. M. W., Banerjee, A., Jacobs, W. R. Jr, & Blanchard, J. S. (1994). Cloning, sequencing, and expressing of Rhodococcus l-phenylalanine dehydrogenase. J. Biol. Chem., 269(23), 16203–16211. BrunhuberN. M. W. BanerjeeA. JacobsW. R.Jr BlanchardJ. S. 1994 Cloning, sequencing, and expressing of Rhodococcus l-phenylalanine dehydrogenase J. Biol. Chem 269 23 16203 16211 Search in Google Scholar

Brunhuber, N. M. W., Thoden, J. B., Blanchard, J. S., & Vanhooke, J. L. (2000). Rhodococcus l-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry, 39(31), 9174–9187. BrunhuberN. M. W. ThodenJ. B. BlanchardJ. S. VanhookeJ. L. 2000 Rhodococcus l-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity Biochemistry 39 31 9174 9187 Search in Google Scholar

Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2002). Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Biochemistry, 41, 11390–11397. SeahS. Y. K. BrittonK. L. RiceD. W. AsanoY. EngelP. C. 2002 Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates Biochemistry 41 11390 11397 Search in Google Scholar

Seah, S. Y. K., Britton, K. L., Rice, D. W., Asano, Y., & Engel, P. C. (2003). Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modelling. Eur. J. Biochem., 270, 4628–4634. SeahS. Y. K. BrittonK. L. RiceD. W. AsanoY. EngelP. C. 2003 Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase with guidance from homologybased modelling Eur. J. Biochem 270 4628 4634 Search in Google Scholar

Asano, Y., Yamada, A., Kato, Y., Yamaguchi, K., Hibino, Y., Hirai, K., & Kondo, K. (1990). Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem., 55(21), 5567–5571. AsanoY. YamadaA. KatoY. YamaguchiK. HibinoY. HiraiK. KondoK. 1990 Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes J. Org. Chem 55 21 5567 5571 Search in Google Scholar

Busca, P., Paradisi, F., Moynihan, E., Maguire, A. R., & Engel, P. C. (2004). Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesis. Org. Biomol. Chem., 2, 2684–2691. BuscaP. ParadisiF. MoynihanE. MaguireA. R. EngelP. C. 2004 Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenase modified by site-directed mutagenesis Org. Biomol. Chem 2 2684 2691 Search in Google Scholar

Hummel, W. E., Schmidt, E., Wandrey, C., & Kula, M.-R. (1986). l-Phenylalanine dehydrogenase from Brevibacterium sp. for production l-phenylalanine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol., 25(3), 175–185. HummelW. E. SchmidtE. WandreyC. KulaM.-R. 1986 l-Phenylalanine dehydrogenase from Brevibacterium sp. for production l-phenylalanine by reductive amination of phenylpyruvate Appl. Microbiol. Biotechnol 25 3 175 185 Search in Google Scholar

Sühnel, J. R. L., & Schowen, L. R. (1991). Theoretical basis for primary and secondary hydrogen isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 3–35). Boca Raton (FL): CRC Press. SühnelJ. R. L. SchowenL. R. 1991 Theoretical basis for primary and secondary hydrogen isotope effects In CookP. F. (Ed.), Enzyme mechanism from isotope effects 3 35 Boca Raton (FL) CRC Press Search in Google Scholar

Schowen, L. R. (1972). Mechanistic deductions from solvent isotope effect. Prog. Phys. Org. Chem., 9, 275–332. SchowenL. R. 1972 Mechanistic deductions from solvent isotope effect Prog. Phys. Org. Chem 9 275 332 Search in Google Scholar

Jemielity, J., Kański, R., & Kańska, M. (2001). Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-l-phenylalanine. J. Label. Compd. Radiopharm., 44, 205–304. JemielityJ. KańskiR. KańskaM. 2001 Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-l-phenylalanine J. Label. Compd. Radiopharm 44 205 304 Search in Google Scholar

Skowera, K., & Kańska, M. (2008). Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14. J. Label. Compd., 51, 321–324. SkoweraK. KańskaM. 2008 Enzymatic synthesis of phenylpyruvic acid labeled with deuterium, tritium, and carbon-14 J. Label. Compd 51 321 324 Search in Google Scholar

Pałka, K., & Kańska, M. (2012). Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of l-tyrosine and l-phenylalanine labeled with deuterium and tritium. Nukleonika, 57(3), 383–387. PałkaK. KańskaM. 2012 Enzymatic reductive amination of p-hydroxy- and phenylpyruvic acids as methods of synthesis of l-tyrosine and l-phenylalanine labeled with deuterium and tritium Nukleonika 57 3 383 387 Search in Google Scholar

Gary, R., Bates, R. G., & Robinson, R. A. (1964). Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale. J. Phys. Chem., 68(12), 3806–3809. GaryR. BatesR. G. RobinsonR. A. 1964 Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°C: Standardization of pD scale J. Phys. Chem 68 12 3806 3809 Search in Google Scholar

Kańska, M., Dragulska, S., Pająk, M., & Winnicka, E. (2015). Isotope effects in the hydroxylation of ltyrosine catalyzed by tyrosinase. J. Radioanal. Nucl. Chem., 305(2), 371–378. KańskaM. DragulskaS. PająkM. WinnickaE. 2015 Isotope effects in the hydroxylation of ltyrosine catalyzed by tyrosinase J. Radioanal. Nucl. Chem 305 2 371 378 Search in Google Scholar

Parkin, D. W. (1991). Methods for determination of competitive and noncompetitive kinetics isotope effects. In P. F. Cook (Ed.), Enzyme mechanism from isotope effects (pp. 269–290), Boca Raton (FL): CRC Press. ParkinD. W. 1991 Methods for determination of competitive and noncompetitive kinetics isotope effects In CookP. F. (Ed.), Enzyme mechanism from isotope effects 269 290 Boca Raton (FL) CRC Press Search in Google Scholar

Papajak, E., Kwiecień, R. A., Rudziński, J., Sicińska, D., Kamiński, R., Szadkowski, Ł., Kurihara, T., Esaki, N., & Paneth, P. (2006). Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effects. Biochemistry, 45(19), 6012–6017. PapajakE. KwiecieńR. A. RudzińskiJ. SicińskaD. KamińskiR. SzadkowskiŁ. KuriharaT. EsakiN. PanethP. 2006 Mechanism of reaction catalyzed by DL-2-haloacid dehalogenase from kinetic isotope effects Biochemistry 45 19 6012 6017 Search in Google Scholar

Brunhuber, N. M. W., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol., 29(6), 415–467. BrunhuberN. M. W. BlanchardJ. S. 1994 The biochemistry and enzymology of amino acid dehydrogenases Crit. Rev. Biochem. Mol. Biol 29 6 415 467 Search in Google Scholar

Wende, U., Koppelkam, M., Hummel, W., Sander, J., & Langenbeck, U. (1990). A new approach to the newborn screening for hyperphenylalaninemias: use of l-phenylalanine dehydrogenase and micrititer plates. Clin. Chim. Acta, 192(3), 165–170. WendeU. KoppelkamM. HummelW. SanderJ. LangenbeckU. 1990 A new approach to the newborn screening for hyperphenylalaninemias: use of l-phenylalanine dehydrogenase and micrititer plates Clin. Chim. Acta 192 3 165 170 Search in Google Scholar

Naghib, S. M., Rabee, M., Omidinia, E., & Khoshkenar, P. (2012). Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuria. Electroanalysis, 24, 407–417. NaghibS. M. RabeeM. OmidiniaE. KhoshkenarP. 2012 Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on the polymer-blend film for phenylketonuria Electroanalysis 24 407 417 Search in Google Scholar

Asano, Y., & Nakazawa, A. (1987). High yield synthesis of l-amino acids by phenylalanine dehydrogenase from Sporasacrina ureae. Agric. Biol. Chem., 51(7), 2035–2036. AsanoY. NakazawaA. 1987 High yield synthesis of l-amino acids by phenylalanine dehydrogenase from Sporasacrina ureae Agric. Biol. Chem 51 7 2035 2036 Search in Google Scholar

Vanhooke, J. L., Thoden, J. B., Brunhuber, N. M. W., Blanchard, J. S., & Holden, H. M. (1999). Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry, 38(8), 2326–2339. VanhookeJ. L. ThodenJ. B. BrunhuberN. M. W. BlanchardJ. S. HoldenH. M. 1999 Phenylalanine dehydrogenase from Rhodococcus sp. M4: High-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism Biochemistry 38 8 2326 2339 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, Physik, andere