Zitieren

Hu, R., Seager, S., & Bains, W. (2012). Photochemistry in terrestrial exoplanet atmospheres I: Photochemistry model and benchmark cases. Astrophys. J., 761(2), 166. DOI: 10.1088/0004-637X/761/2/166. Hu, R., Seager, S., & Bains, W. (2012). Photochemistry in terrestrial exoplanet atmospheres I: Photochemistry model and benchmark cases. Astrophys. J., 761(2), 166. DOI: 10.1088/0004-637X/761/2/166.Open DOISearch in Google Scholar

Rimme, P. B., Ferus, M., & Waldmann, I. P. (2019). Identifiable acetylene features predicted for young Earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys. J., 888(1), 21. DOI: 10.3847/1538-4357/ab55e8. Rimme, P. B., Ferus, M., & Waldmann, I. P. (2019). Identifiable acetylene features predicted for young Earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys. J., 888(1), 21. DOI: 10.3847/1538-4357/ab55e8.Open DOISearch in Google Scholar

Dobrijevic, M., & Parisot, J. P. (1995). Numerical simulation of organic compounds formation in planetary atmospheres: Comparison with laboratory experiments. Adv. Space Res., 15(10), 1–4. DOI: 10.1016/0273-1177(94)00143-O. Dobrijevic, M., & Parisot, J. P. (1995). Numerical simulation of organic compounds formation in planetary atmospheres: Comparison with laboratory experiments. Adv. Space Res., 15(10), 14. DOI: 10.1016/0273-1177(94)00143-O.Open DOISearch in Google Scholar

Löhle, S., Zander, F., & Hermann, T. A. (2017). Experimental simulation of meteorite ablation during Earth entry using a plasma wind tunnel. Astrophys. J., 837(2), 170–178. DOI: 10.3847/1538-4357/aa5cb5. Löhle, S., Zander, F., & Hermann, T. A. (2017). Experimental simulation of meteorite ablation during Earth entry using a plasma wind tunnel. Astrophys. J., 837(2), 170178. DOI: 10.3847/1538-4357/aa5cb5.Open DOISearch in Google Scholar

Bartnik, A., Skrzeczanowski, W., & Wachulak, P. (2021). Spectral investigations of low-temperature plasma induced in CO2 gas by nanosecond pulses of extreme ultraviolet (EUV). Plasma Sources Sci. Technol., 30(11), 115008. DOI: 10.1088/1361-6595/ac2e9a. Bartnik, A., Skrzeczanowski, W., & Wachulak, P. (2021). Spectral investigations of low-temperature plasma induced in CO2 gas by nanosecond pulses of extreme ultraviolet (EUV). Plasma Sources Sci. Technol., 30(11), 115008. DOI: 10.1088/1361-6595/ac2e9a.Open DOISearch in Google Scholar

Skrzeczanowski, W., & Długaszek, M. (2021). Al and Si quantitative analysis in aqueous solutions by LIBS method. Talanta, 225, 121916. DOI: 10.1016/j. talanta.2020.121916. Skrzeczanowski, W., & Długaszek, M. (2021). Al and Si quantitative analysis in aqueous solutions by LIBS method. Talanta, 225, 121916. DOI: 10.1016/j.talanta.2020.121916.Open DOISearch in Google Scholar

Tellinghuisen, P. C., Tellinghuisen, J., & Tisone, G. C. (1978). Spectroscopic studies of diatomic noble gas halides. III. Analysis of XeF 3500 Å band system. J. Chem. Phys., 68(11), 5187–5198. DOI: 10.1063/1.435582. Tellinghuisen, P. C., Tellinghuisen, J., & Tisone, G. C. (1978). Spectroscopic studies of diatomic noble gas halides. III. Analysis of XeF 3500 Å band system. J. Chem. Phys., 68(11), 51875198. DOI: 10.1063/1.435582.Open DOISearch in Google Scholar

Tellinghuisen, P. C., Tellinghuisen, J., & Coxon, J. A. (1978). Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for the X, B, and D states of XeF. J. Chem. Phys., 68(11), 5177–5186. DOI: 10.1063/1.435583. Tellinghuisen, P. C., Tellinghuisen, J., & Coxon, J. A. (1978). Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for the X, B, and D states of XeF. J. Chem. Phys., 68(11), 51775186. DOI: 10.1063/1.435583.Open DOISearch in Google Scholar

Tellinghuisen, J., Hays, A. K., & Hoffman, J. M. (1976). Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF. J. Chem. Phys., 65(11), 4473–4482. DOI: 10.1063/1.432994. Tellinghuisen, J., Hays, A. K., & Hoffman, J. M. (1976). Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF. J. Chem. Phys., 65(11), 44734482. DOI: 10.1063/1.432994.Open DOISearch in Google Scholar

Huber, K. P., & Herzberg, G. (1979). Molecular spectra and molecular structure, IV. Constants of diatomic molecules. New York: Springer. Huber, K. P., & Herzberg, G. (1979). Molecular spectra and molecular structure, IV. Constants of diatomic molecules. New York: Springer.Search in Google Scholar

Bartnik, A., Jach, K., & Świerczyński, R. (2022). Dynamics of plasmas produced by a laser pulse, inside a dense gaseous target, formed in an ambient gas. Phys. Plasmas, 29(9), 093302. DOI: 10.1063/5.0099683. Bartnik, A., Jach, K., & Świerczyński, R. (2022). Dynamics of plasmas produced by a laser pulse, inside a dense gaseous target, formed in an ambient gas. Phys. Plasmas, 29(9), 093302. DOI: 10.1063/5.0099683.Open DOISearch in Google Scholar

Western, C. M. (2016). PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf., 186, 221–242. DOI: 10.1016/j.jqsrt.2016.04.010. Western, C. M. (2016). PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf., 186, 221242. DOI: 10.1016/j.jqsrt.2016.04.010.Open DOISearch in Google Scholar

National Institute of Standards and Technology. (2021). The Digital Millennium Copyright Act (DMCA). Updated October 1, 2021, from https://webbook.nist.gov/chemistry. National Institute of Standards and Technology. (2021). The Digital Millennium Copyright Act (DMCA). Updated October 1, 2021, from https://webbook.nist.gov/chemistry.Search in Google Scholar

eISSN:
1508-5791
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere