1. bookVolumen 65 (2020): Heft 2 (June 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1508-5791
Erstveröffentlichung
25 Mar 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Exposures from radon, thoron, and thoron progeny in high background radiation area in Takandeang, Mamuju, Indonesia

Online veröffentlicht: 29 May 2020
Volumen & Heft: Volumen 65 (2020) - Heft 2 (June 2020)
Seitenbereich: 89 - 94
Eingereicht: 27 Nov 2019
Akzeptiert: 28 Jan 2020
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1508-5791
Erstveröffentlichung
25 Mar 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Katherem, R. L. (1998). NORM sources and their origins. Appl. Radiat. Isot., 49, 149–168. DOI: 10.1016/s0969-8043(97)00237-6.10.1016/S0969-8043(97)00237-6Search in Google Scholar

2. Klement, A. W. (1982). Natural sources of environmental radiation. Florida: CRC Press.Search in Google Scholar

3. Syaeful, H., Sukadana, I. G., & Sumaryanto, A. (2014). Radiometric mapping for naturally occurring radioactive materials (NORM) assessment in Mamuju, West Sulawesi. Atom Indonesia, 40(1), 33–39. DOI: 10.17146/aij.2014.263.10.17146/aij.2014.263Search in Google Scholar

4. Omori, Y., Janik, M., Sorimachi, A., Ishikawa, T., & Tokonami, S. (2012). Effects of air exchange property of passive-type radon–thoron discriminative detectors on performance of radon and thoron measurements. Radiat. Prot. Dosim., 152(1/3), 140–145. DOI: 10.1093/rpd/ncs210.10.1093/rpd/ncs21022923254Search in Google Scholar

5. Zhuo, W., & Iida, T. (2000). Estimation of thoron progeny in dwellings with their deposition rate measurements. J. Health Phys., 35, 365–370. DOI: 10.5453/jhps.35.365.10.5453/jhps.35.365Search in Google Scholar

6. Hosoda, M., Kudo, H., Iwaoka, K., Yamada, R., Suzuki, T., Tamakuma, Y., & Tokonami, S. (2017). Characteristic of thoron (220Rn) in environment. Appl. Radiat. Isot., 120, 7–10. DOI: 10.1016/j. apradiso.2016.11.014.Search in Google Scholar

7. International Organization for Standardization. (2014). Measurement of radioactivity in the environment-Air-Radon 220: Integrated measurement methods for the determination of the average activity concentration using passive solid-state nuclear track detectors. ISO 16641:2014(E). Switzerland.Search in Google Scholar

8. Ngoa Engola L., Ndjana Nkoulou, J. E., Hosoda, M., Bongue, D., Saïdou,, Akata, N., Koukong Heya, R., Kwato Njock, M. G., & Tokonami, S. (2018). Air absorbed dose rate measurements and external dose assessment by car-borne survey in the gold mining areas of Betare-Oya, Eastern-Cameroon. J. Health Phys., 53(1), 200–209. DOI: 10.5453/jhps.53.5.10.5453/jhps.53.5Search in Google Scholar

9. International Commission on Radiological Protection (2017). Occupational intakes of radionuclides: Part 3. (ICRP Publication 137). Ann. ICRP, 46(3/4).10.1177/014664531773496329380630Search in Google Scholar

10. Suzuki, G., Yamaguchi, I., Ogata, H., Sugiyama, H., Yonehara, H., Kasagi, F., & Kimura, S. (2010). A nation-wide survey on indoor radon from 2007 to 2010 in Japan. 2010. J. Radiat. Res., 51(6), 683–689. DOI: 10.1269/jrr.10083.10.1269/jrr.1008320940519Search in Google Scholar

11. Yamasaki, T., Guo, Q., & Iida, T. (1995). Distributions of thoron progeny concentrations in dwellings. Radiat. Prot. Dosim., 59(2), 135–140. DOI: 10.1093/oxfordjournals.rpd. a082644.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo