Zitieren

1. Maillie, H. D., & Jacobson, A. P. (1992). A graphical method of estimating fatal radiation-induced cancers using the BEIR V method. Health Phys., 63(3), 273–280.10.1097/00004032-199209000-000021644563Search in Google Scholar

2. Maillie, H. D., Simon, W., Watts, R. J., & Quinn, B. R. (1993). Determining person-years of life lost using the BEIR V method. Health Phys., 64(5), 461–466.10.1097/00004032-199305000-000018491595Search in Google Scholar

3. Rother, F. C., Rebello, W. F., Healy, M. J., Silva, M. M., Cabral, P. A., Vital, H. C., & Andrade, E. R. (2016). Radiological risk assessment by convergence methodology model in RDD scenarios. Risk Anal., 36(11), 2039–2046. DOI: 10.1111/risa.12557.10.1111/risa.1255726895431Open DOISearch in Google Scholar

4. Andrade, C. P. S., Souza, C. J., Camerini, E. S. N., Alves, I. S., Vital, H. C., Healy, M. J. F., & Andrade, E. R. (2018). Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario. Toxicol. Ind. Health, 34(6), 433–438. https://doi.org/10.1177/0748233718762920.10.1177/074823371876292029665768Open DOISearch in Google Scholar

5. Purves, M., & Parkes, D. (2016). Validation of the DIFFAL, HPAC and HotSpot dispersion models using the Full-Scale Radiological Dispersal Device (FSRDD) field trials witness plate deposition dataset. Health Phys., 110(5), 481–490.10.1097/HP.000000000000046327023035Search in Google Scholar

6. Thomson, W. H., & Roberts, P. J. (1986). Cost-benefit analysis in radiation protection. Nucl. Med. Commun., 7(12), 855–856.10.1097/00006231-198612000-00001Search in Google Scholar

7. Weatherburn, H. (1984). A realistic approach to cost-benefit analysis in radiation protection. Br. J. Radiol., 57(681), 847–848. https://doi.org/10.1259/0007-1285-57-681-847.10.1259/0007-1285-57-681-8476434015Open DOISearch in Google Scholar

8. International Commission on Radiological Protection. (1983). Cost-benefit analysis in the optimization of radiation protection. Ann. ICRP, 10(2/3). (ICRP Publication 37).Search in Google Scholar

9. Homann, S. G. (2013). HotSpot Health Physics Codes Version 3.0 User’s Guide. Lawrence Livermore National Laboratory, CA, USA.Search in Google Scholar

10. Harper, F. T., Musolino, S. V., & Wente, W. B. (2007). Realistic radiological dispersal device hazard boundaries and ramifications for early consequence management decisions. Health Phys., 93(1), 1–16.10.1097/01.HP.0000264935.29396.6f17563488Search in Google Scholar

11. International Atomic Energy Agency. (1996). Methods for estimating the probability of cancer from occupational radiation exposure. Vienna: IAEA. (IAEATECDOC-870).Search in Google Scholar

12. Preston, D. L., Ron, E., Tokuoka, S., Funamoto, S., Nishi, N., Soda, M., Mabuchi, K., & Kodama, K. (2007). Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res., 168(1), 1–64. https://doi.org/10.1667/RR0763.1.10.1667/RR0763.117722996Open DOISearch in Google Scholar

13. Lee, W. C. (2014). Excess relative risk as an effect measure in case-control studies of rare diseases. PLoS One, 10(4), e0121141. https://doi.org/10.1371/journal.pone.0121141.10.1371/journal.pone.0121141441263925919483Search in Google Scholar

14. Darby, S. C., Doll, R., Gill, S. K., & Smith, P. G. (1987). Long term mortality after a single treatment course with X-rays in patients treated for ankylosing spondylitis. Br. J. Cancer, 55(2), 179–190. https://doi.org/10.1038/bjc.1987.35.10.1038/bjc.1987.35Open DOISearch in Google Scholar

15. Narendran, N., Luzhna, L., & Kovalchuk, O. (2019). Sex difference of radiation response in occupational and accidental exposure. Front. Genet., 10, 260. https://doi.org/10.3389/fgene.2019.00260.10.3389/fgene.2019.00260Search in Google Scholar

16. International Commission on Radiological Protection. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, 37(2/4), 1–332. (ICRP Publication 103).Search in Google Scholar

17. International Commission on Radiological Protection. (1989). Optimization and decision-making in radiological protection. A report of a Task Group of Committee 4 of the International Commission on Radiological Protection. Ann. ICRP, 20(1), 1–60.Search in Google Scholar

18. International Commission on Radiological Protection. (1973). Implications of Commission recommendations that doses be kept as low as readily achievable. (ICRP Publication 22). Oxford: Pergamon Press.Search in Google Scholar

19. Dillon, M., Kane, J., Nasstrom, J., Homann, S., & Pobanz, B. (2016). Summary of building protection factor studies for external exposure to ionizing radiation. Lawrence Livermore National Laboratory, CA, USA. (LLNL-TR-684121).10.2172/1256433Search in Google Scholar

20. Mettler, F. A. Jr. (2005). Medical resources and requirements for responding to radiological terrorism. Health Phys., 89(5), 488–493.10.1097/01.HP.0000172143.37040.bdSearch in Google Scholar

21. Conklin, C., & Edwards, J. (2000). Selection of protective action guides for nuclear incidents. J. Hazard. Mater., 75(2/3), 131–144. https://doi.org/10.1016/S0304-3894(00)00176-X.10.1016/S0304-3894(00)00176-XOpen DOISearch in Google Scholar

22. Sorensen, J. H., Shumpert, B. L., & Vogt, B. M. (2004). Planning for protective action decision making: evacuate or shelter-in-place. J. Hazard. Mater., 109(1/3), 1–11. https://doi.org/10.1016/j.jhazmat.2004.03.004.10.1016/j.jhazmat.2004.03.00415177740Open DOISearch in Google Scholar

eISSN:
0029-5922
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere