Uneingeschränkter Zugang

Optimization of joining HDPE rods by continuous drive friction welding


Zitieren

Fig. 1

CDFW machine setup. CDFW, continuous drive friction welding
CDFW machine setup. CDFW, continuous drive friction welding

Fig. 2

Tensile test specimen dimensions
Tensile test specimen dimensions

Fig. 3

HDPE rods joined using CDFW according to different welding conditions. CDFW, continuous drive friction welding; HDPE, high-density polyethylene
HDPE rods joined using CDFW according to different welding conditions. CDFW, continuous drive friction welding; HDPE, high-density polyethylene

Fig. 4

Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for Tmax
Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for Tmax

Fig. 5

3D surface and contour plots for the maximum welding temperature. The maximum reported values are actual measured values for each speed level
3D surface and contour plots for the maximum welding temperature. The maximum reported values are actual measured values for each speed level

Fig. 6

Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for the axial shortening
Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for the axial shortening

Fig. 7

3D surface and contour plots for the axial shortening according to RS's. The maximum reported values are actual measured values for each speed level
3D surface and contour plots for the axial shortening according to RS's. The maximum reported values are actual measured values for each speed level

Fig. 8

Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for the TS. TS, tensile strength
Data normality check using the normal probability plot, the versus fits, the histogram, and the versus order for the TS. TS, tensile strength

Fig. 9

Pareto chart of the standardized effects for the TS of the joints. TS, tensile strength
Pareto chart of the standardized effects for the TS of the joints. TS, tensile strength

Fig. 10

Surface and contour plots of the TS as a function of tf and Ff. The maximum reported values are actual measured values for each speed level
Surface and contour plots of the TS as a function of tf and Ff. The maximum reported values are actual measured values for each speed level

Fig. 11

Effect of process parameters on the appearance of welded joints arranged according to axial shortening from minimum to maximum
Effect of process parameters on the appearance of welded joints arranged according to axial shortening from minimum to maximum

Regression equation in coded parameters for the axial shortening

RS (rpm) Regression equation
082 Short=1.060.0717tf+0.00064Ff+0.000057tf20.000001Ff2+0.000057tf×Ff {\rm{Short}} = 1.06 - 0.0717{t_f} + 0.00064{F_f} + 0.000057t_f^2 - 0.000001F_f^2 + 0.000057{t_f} \times {F_f}
165 Short=0.600.0400tf+0.00147Ff+0.000057tf20.000001Ff2+0.000057tf×Ff {\rm{Short}} = - 0.60 - 0.0400{t_f} + 0.00147{F_f} + 0.000057t_f^2 - 0.000001F_f^2 + 0.000057{t_f} \times {F_f}
300 Short=2.43+0.0312tf+0.00183Ff+0.000057tf20.000001Ff2+0.000057tf×Ff {\rm{Short}} = - 2.43 + 0.0312{t_f} + 0.00183{F_f} + 0.000057t_f^2 - 0.000001F_f^2 + 0.000057{t_f} \times {F_f}
400 Short=1.75+0.0494tf+0.00141Ff+0.000057tf20.000001Ff2+0.000057tf×Ff {\rm{Short}} = - 1.75 + 0.0494{t_f} + 0.00141{F_f} + 0.000057t_f^2 - 0.000001F_f^2 + 0.000057{t_f} \times {F_f}
550 Short=4.07+0.1086tf+0.00290Ff+0.000057tf20.000001Ff2+0.000057tf×Ff {\rm{Short}} = - 4.07 + 0.1086{t_f} + 0.00290{F_f} + 0.000057t_f^2 - 0.000001F_f^2 + 0.000057{t_f} \times {F_f}

Regression equations for predicting the TS

RS (rpm) Regression equation
082 TS=10.61+0.345tf+0.00959Ff0.00159tf20.000002Ff20.000051tf×Ff {\rm{TS}} = - 10.61 + 0.345{t_f} + 0.00959{F_f} - 0.00159t_f^2 - 0.000002F_f^2 - 0.000051{t_f} \times {F_f}
165 TS=3.10+0.256tf+0.00532Ff0.00159tf20.000002Ff20.000051tf×Ff {\rm{TS}} = 3.10 + 0.256{t_f} + 0.00532{F_f} - 0.00159t_f^2 - 0.000002F_f^2 - 0.000051{t_f} \times {F_f}
300 TS=2.41+0.224tf+0.01012Ff0.00159tf20.000002Ff20.000051tf×Ff {\rm{TS}} = - 2.41 + 0.224{t_f} + 0.01012{F_f} - 0.00159t_f^2 - 0.000002F_f^2 - 0.000051{t_f} \times {F_f}
400 TS=3.13+0.131tf+0.00842Ff0.00159tf20.000002Ff20.000051tf×Ff {\rm{TS}} = 3.13 + 0.131{t_f} + 0.00842{F_f} - 0.00159t_f^2 - 0.000002F_f^2 - 0.000051{t_f} \times {F_f}
550 TS=4.04+0.242tf+0.00859Ff0.00159tf20.000002Ff20.000051tf×Ff {\rm{TS}} = - 4.04 + 0.242{t_f} + 0.00859{F_f} - 0.00159t_f^2 - 0.000002F_f^2 - 0.000051{t_f} \times {F_f}

Analysis of variance for the axial shortening

Source DF Adj SS Adj MS F-Value P-Value
Model 17 492.737 28.9845 174.17 0.000
  Linear 6 445.319 74.2199 446.00 0.000
tf 1 97.663 97.6626 586.87 0.000
Ff 1 30.961 30.9606 186.05 0.000
RS 4 316.696 79.1740 475.77 0.000
  Square 2 1.404 0.7021 4.22 0.021
tf2 t_f^2 1 0.006 0.0058 0.03 0.853
Ff2 F_f^2 1 1.352 1.3516 8.12 0.006
2-Way Interaction 9 46.014 5.1126 30.72 0.000
tf*Ff 1 3.486 3.4861 20.95 0.000
tf*RS 4 37.344 9.3360 56.10 0.000
Ff*RS 4 5.184 1.2959 7.79 0.000
Error 47 7.821 0.1664
  Lack-of-Fit 27 5.567 0.2062 1.83 0.084
  Pure Error 20 2.254 0.1127
Total 64 500.559

Regression equation in coded parameters

RS Regression equation
082 Tmax=9.91+1.003tf+0.02847Ff0.00481tf20.000006Ff20.000130tf×Ff {T_{max}} = 9.91 + 1.003{t_f} + 0.02847{F_f} - 0.00481t_f^2 - 0.000006F_f^2 - 0.000130{t_f} \times {F_f}
165 Tmax=16.14+0.998tf+0.03025Ff0.00481tf20.000006Ff20.000130tf×Ff {T_{max}} = 16.14 + 0.998{t_f} + 0.03025{F_f} - 0.00481t_f^2 - 0.000006F_f^2 - 0.000130{t_f} \times {F_f}
300 Tmax=21.83+1.070tf+0.02963Ff0.00481tf20.000006Ff20.000130tf×Ff {T_{max}} = 21.83 + 1.070{t_f} + 0.02963{F_f} - 0.00481t_f^2 - 0.000006F_f^2 - 0.000130{t_f} \times {F_f}
400 Tmax=22.80+1.111tf+0.02948Ff0.00481tf20.000006Ff20.000130tf×Ff {T_{max}} = 22.80 + 1.111{t_f} + 0.02948{F_f} - 0.00481t_f^2 - 0.000006F_f^2 - 0.000130{t_f} \times {F_f}
550 Tmax=35.17+0.988tf+0.02932Ff0.00481tf20.000006Ff20.000130tf×Ff {T_{max}} = 35.17 + 0.988{t_f} + 0.02932{F_f} - 0.00481t_f^2 - 0.000006F_f^2 - 0.000130{t_f} \times {F_f}

Levels of process parameters for CDFW of HDPE

Parameter Code Levels
RS (rpm) Speed 82 – 169 – 300 – 400 – 550
Friction force – Ff (N) Force 1,000–2,000
Friction time – tf (s) Time 30–60

ANOVA for TS

Source DF Adj SS Adj MS F-Value P-Value
Model 17 243.893 14.347 4.34 0.000
  Linear 6 163.399 27.233 8.25 0.000
tf 1 4.031 4.031 1.22 0.275
Ff 1 17.543 17.543 5.31 0.026
RS 4 141.825 35.456 10.74 0.000
  Square 2 8.616 4.308 1.30 0.281
tf2 t_f^2 1 4.475 4.475 1.36 0.250
Ff2 F_f^2 1 5.260 5.260 1.59 0.213
2-Way Interaction 9 71.878 7.986 2.42 0.024
tf *Ff 1 2.833 2.833 0.86 0.359
tf *RS 4 42.229 10.557 3.20 0.021
Ff *RS 4 26.816 6.704 2.03 0.105
Error 47 155.205 3.302
  Lack-of-Fit 27 108.605 4.022 1.73 0.106
  Pure Error 20 46.600 2.330
Total 64 399.098

j.msp-2022-0017.apptab.001

Run Maximum temperature (°C) Axial shortening (mm) Tensile strength (MPa) Run Maximum temperature (°C) Axial shortening (mm) Tensile strength (MPa)
1 56.3 0.15 4.450 34 86.8 4.45 14.910
2 62.4 0.20 7.102 35 81.9 3.55 12.514
3 60.8 0.65 7.800 36 82.0 3.80 12.790
4 72.3 1.65 9.390 37 83.0 4.00 14.370
5 53.3 0.30 5.510 38 84.0 3.70 14.150
6 73.0 1.00 13.260 39 80.5 3.55 11.830
7 58.0 0.15 5.320 40 73.2 2.15 10.870
8 64.5 0.95 8.356 41 95.9 6.20 10.500
9 69.1 0.75 9.320 42 80.6 2.35 9.040
10 64.4 0.55 8.330 43 91.3 8.15 9.090
11 68.6 0.70 9.250 44 76.4 1.95 14.300
12 72.4 2.00 11.110 45 94.1 6.70 7.100
13 68.4 0.90 10.930 46 73.3 2.55 7.390
14 61.0 0.50 13.030 47 90.8 5.35 13.470
15 76.0 0.75 13.550 48 85.2 4.85 10.500
16 68.8 1.35 11.290 49 79.9 4.80 10.160
17 81.8 3.40 11.520 50 85.7 4.85 13.570
18 67.1 0.75 11.910 51 82.7 4.40 12.110
19 79.0 3.25 14.570 52 84.5 4.75 13.060
20 67.9 0.55 13.620 53 81.8 3.20 7.490
21 79.9 2.55 11.450 54 92.6 8.00 8.330
22 74.9 2.05 11.240 55 86.8 5.10 7.900
23 75.4 1.65 13.410 56 95.0 12.80 9.890
24 69.2 1.90 10.820 57 79.6 3.00 8.290
25 77.9 1.90 10.340 58 97.0 10.90 8.270
26 76.5 2.10 7.730 59 83.8 5.10 9.120
27 69.7 1.15 7.540 60 97.6 8.80 11.980
28 87.0 4.05 12.285 61 94.9 6.90 8.980
29 79.0 2.60 13.500 62 92.5 6.60 6.140
30 88.3 6.45 10.500 63 92.2 7.00 9.970
31 72.0 1.55 11.560 64 94.1 7.55 9.930
32 91.0 6.95 10.810 65 91.1 6.90 9.650
33 74.4 1.70 9.360

Physical and mechanical properties of HDPE [23]

Property Value
Melting temperature (°C) 126–135
Crystallization temperature (°C) 111.9
Density (g/cm3) 0.955
Thermal conductivity (W/mK) 0.35–0.49
Specific heat – solid (kJ/kg°C) 1.9
Tensile strength (MPa) at 23°C 23.0–29.5

Analysis of variance

Source DF Adj SS Adj MS F-Value P-Value
Model 17 7297.99 429.29 50.12 0.000
  Linear 6 7162.50 1193.75 139.37 0.000
tf 1 1510.42 1510.42 176.34 0.000
Ff 1 467.61 467.61 54.59 0.000
RS 4 5184.47 1296.12 151.32 0.000
  Square 2 92.92 46.46 5.42 0.008
tf2 t_f^2 1 40.66 40.66 4.75 0.034
Ff2 F_f^2 1 63.98 63.98 7.47 0.009
2-Way Interaction 9 42.58 4.73 0.55 0.828
tf*Ff 1 18.43 18.43 2.15 0.149
tf*RS 4 20.98 5.24 0.61 0.656
Ff*RS 4 3.17 0.79 0.09 0.984
Error 47 402.56 8.57
  Lack-of-Fit 27 287.51 10.65 1.85 0.080
  Pure Error 20 115.06 5.75
Total 64 7700.56
eISSN:
2083-134X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, andere, Nanomaterialien, Funktionelle und Intelligente Materialien, Charakterisierung und Eigenschaften von Materialien