1. bookVolumen 51 (2020): Heft 1 (January 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Analysis of selected mineral and waste sorbents for the capture of elemental mercury from exhaust gases

Online veröffentlicht: 31 Oct 2020
Volumen & Heft: Volumen 51 (2020) - Heft 1 (January 2020)
Seitenbereich: 17 - 35
Eingereicht: 12 Oct 2019
Akzeptiert: 06 Jul 2020
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

Several mineralogically, chemically and texturally diverse minerals and waste materials were selected for the testing of elemental mercury capture in exhaust gas, namely tyre char resulting from the burning of pyrolytic rubber tyres, class C fly ash, mesoporous material type MCM-41 and glauconite. Each material’s mineralogical, chemical and textural characteristics were explored. In order to conduct experiments in conditions similar to those during the contact of sorbent with real coal exhaust fumes at a temperature of about 110-120°C, the experiments were carried out using a test device consisting of a furnace for burning powdered coals, a thermostatic cage for sorbent reactors and mercury gas analysers, which are able to measure and compare the effects of individual sorbents with exhaust gas. The study found that the best results for mercury sorption in the exhaust atmosphere were obtained for class C ash resulting from brown coal combustion.

Bujny, M., Burmistrz, P., Gruszka, S., Janicki, W., Kogutt, K., & Strugała, A. (2012). Instalacja demonstracyjna do monitorowania i redukcji emisji rtęci ze spalania węgla kamiennego w kotłach pyłowych. Polityka Energetyczna, 15(4), 161-174. Search in Google Scholar

Bustard, J., Durham, M., Lindsey, C., Starns, T., Martin, C., Schlager, R., Sjostrom, S., Renninger, S., McMahon, T., Monroe, L., Goodman, J. M,. & Miller, R. (2003). Results of Activated Carbon Injection for Mercury Control Upstream of a COHPAC Fabric Filter. The Mega Meeting: Power Plant Air Pollution Control Symposium, Washington D.C., May 19-22. Search in Google Scholar

Bustard, J., Durham, M., Starns, T., Lindsey, Ch., Martin, C., Schlager, R., & Baldrey K. (2004). Full-scale Evaluation of Sorbent Injection for Mercury Control on Coal-fired Power Plants. Fuel Processing Technology, 85(6-7), 549-562. DOI: 10.1016/j.fuproc.2003.11.021.10.1016/j.fuproc.2003.11.021 Search in Google Scholar

Czarna-Juszkiewicz, D., Wdowin, M., Kunecki, P., Baran, P., Panek, R., & Żmuda, R. (2018). Charakterystyka odpadu po pirolizie opon oraz analiza jego potencjalnego wykorzystania. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk 107, 19-32. Search in Google Scholar

Dyrektywa Parlamentu Europejskiego i Rady 2010/75/UE z dnia 24 listopada 2010 r. w sprawie emisji przemysłowych (zintegrowane zapobieganie zanieczyszczeniom i ich kontrola). Search in Google Scholar

Galbreath, K.C., & Zygarlicke, Ch.J. (2000). Mercury Transformation in Coal Combustion Flue Gas. Fuel Processing Technology, 65-66, 289-310. DOI: 10.1016/S0378-3820(99)00102-2.10.1016/S0378-3820(99)00102-2 Search in Google Scholar

Grzywacz, P., Dziok, T., & Porada, S. (2015). Behavior of Mercury in the Processes of Energo-Chemical Coal Processing in. Mercury As a Coal Combustion Pollutant [eds.] Gołaś J., Strugała A., Published and printed by Oficyna Drukarska – Jacek Chmielewski. pp. 152. Search in Google Scholar

https://emis.vito.be Search in Google Scholar

Lavoie, R., Jardine, T. D., Chumchal, M. M., Kidd, K., & Campbell, L. M. (2013). Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 47, 13385-13394. DOI: 10.1021/es403103t.10.1021/es403103t24151937 Search in Google Scholar

Macherzyński, M. (2018). Redukcja emisji rtęci do środowiska – wybrane problemy w świetle badań laboratoryjnych i przemysłowych. Wydawnictwa AGH, seria Rozprawy - monografie nr 330, Kraków 2018. Search in Google Scholar

Olson, E. S., Azenkeng, A., Laumb, J. D., Jensen, R. R., Benson, S. A., & Hoffmann, M. R. (2009). New Developments in the Theory and Modeling of Mercury Oxidation and Binding on Activated Carbons in Flue Gas. Fuel Processing Technology, 90(11), 1360-1363. DOI: 10.1016/j.fuproc.2009.08.006.10.1016/j.fuproc.2009.08.006 Search in Google Scholar

Pacyna, J. M., Sundseth, K., Pacyna, E. G., Munthe, J., Belhaj, M., Astrom, S., Panasiuk, D., & Głodek, A. (2008). Socio-economic costs of continuing the status-quo of mercury pollution, GLOCBA-SE Report, Nordic Council of Ministers, TemaNord 2008:580, Copenhagen, http://www.norden.org/no/publikasjoner/publikasjoner/2008-580. Search in Google Scholar

Panasiuk, D., Pacyna, J. M., Głodek, A., Pacyna, E. G., Sebesta, L., &Rutkowski, T. (2009). Szacowanie kosztów zanieczyszczenia rtęcią dla scenariusza status-quo, raport MERCPOL etap I, Katowice. Search in Google Scholar

Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L. A., Deng, H., Liu, J., Sun, C., Liu, H., C Snape C.E. (2017). Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 22, 81-90. DOI: 10.1016/j.jcou.2017.09.015.10.1016/j.jcou.2017.09.015 Search in Google Scholar

Presto, A. A., Granite, E. J. (2006). Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology, 40(18), 5601-5609. DOI: 10.1021/es060504i.10.1021/es060504i17007115 Search in Google Scholar

Sloss, L. (2008). Economics of mercury control. CCC/134, s.60. Search in Google Scholar

Wdowin, M., Macherzyński, M., Panek, R., Górecki, J., & Franus, W. (2015). Investigation of the sorption of mercury vapour from exhaust gas by an Ag–;X zeolite. Clay Minerals, 50, 31-40. DOI: 10.1180/claymin.2015.050.1.04.10.1180/claymin.2015.050.1.04 Search in Google Scholar

Wichliński, M., Kobyłecki, R., & Bis, Z. (2012). Przegląd metod ograniczenia emisji rtęci w elektrowniach podczas spalania paliw stałych. Polityka Energetyczna 15(4), 151-160. Search in Google Scholar

Wilcox, J., Rupp, E., Ying, S.C., Lim, D.H., Negreira, A.S., Kirchofer, A., Feng, F., & Lee, K. (2012). Mercury adsorption and oxidation in coal combustion and gasification processes. International Journal of Coal Geology, 90, 4-20. DOI: 10.1016/j.coal.2011.12.003.10.1016/j.coal.2011.12.003 Search in Google Scholar

Zhang, L., Wang, S., Wu, Q., Wang, F., Lin, C. J., Zhang, L., Hui, M., Yang, M., Su, H., & Hao, J. (2016). Mercury transformation and speciation in flue gases from anthropogenic emission sources: A critical review. Atmospheric Chemistry and Physics. 16, 2417–2433. DOI: 10.5194/acp-16-2417-2016.10.5194/acp-16-2417-2016 Search in Google Scholar

Żmuda, R., Adamczyk, W., Lelek, Ł., Mandrela, S., Wdowin, M. (2017). Innowacyjna technologia oczyszczania spalin z rtęci jako rozwiązanie sprostania wymogom stawianym przez konkluzje BAT/BREF w polskiej energetyce. Polityka Energetyczna - Energy Policy Journal 20(4), 103-116. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo