1. bookVolumen 59 (2022): Heft 3 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

On the Issue of Collision of Balls in an Auto-Balancing Device

Online veröffentlicht: 23 Jun 2022
Volumen & Heft: Volumen 59 (2022) - Heft 3 (June 2022)
Seitenbereich: 140 - 154
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch

1. Saveiev, I.V. (1982). General Physics Course (vol. I. Mechanics, Oscillations and Waves, Molecular Physics Science). Main Editorial Office of Physical and Mathematical Literature, M. (in Russian). Search in Google Scholar

2. Grigoriev, A.Yu., Grigoriev, K.A., & Malyavko, D.P. (2015). Collision of Bodies: Textbook. SPb.: ITMO University (in Russian). Search in Google Scholar

3. Strautmanis, G., Mezītis, M., Strautmane, V., & Gorbenko, A. (2018). Model of a vertical rotor with an automatic balancer with two compensating masses. In: Vibroengineering PROCEDIA, vol. 21: 35th International Conference on Vibroengineering (pp. 202–207), 13–15 December 2018, India, Delhi. Search in Google Scholar

4. Sperling, L., Ryzhik, B., Linz, Ch., & Duckstein, H. (2002). Simulation of Two-Plane Automatic Balancing of a Rigid Rotor. Mathematics and Computers in Simulation, 58 (4–6), 351–365.10.1016/S0378-4754(01)00377-9 Search in Google Scholar

5. Ryzhik, B., Duckstein, H., & Sperling, L. (2004). Partial Compensation of Unbalance by One- and Two Automatic Balancing Devices. International Journal of Rotating Machinery, 10 (3), 193–201.10.1155/S1023621X0400020X Search in Google Scholar

6. Gorbenko, A.N., Klimenko, N.P., & Strautmanis, G. (2017). Influence of Rotor Unbalance Increasing on the Stability of its Autobalancing. Procedia Engineering, 206, 266–271. doi: 10.1016/j.proeng.2017.10.472. DOI öffnenSearch in Google Scholar

7. Goncharov, V., Filimonikhin, G., Nevdakha, A., & Pirogov, V. (2017). An Increase of the Balancing Capacity of Ball or Roller-Type Auto-Balancers with Reduction of Time of Achieving Auto-Balancing. Eastern-European Journal of Enterprise Technologies, 1 (7), 15–24. doi: 10.15587/1729-4061.2017.92834. DOI öffnenSearch in Google Scholar

8. Kapitza, P.L. (1951). Dynamic stability of the pendulum at an oscillating suspension point. ZhETF, 21, 588–597 (in Russian). Search in Google Scholar

9. Butikov, E.I. (2011). An Improved Criterion for Kapitza’s Pendulum Stability. Journal of Physics A: Mathematical and Theoretical, 44, 295202. Search in Google Scholar

10. Butcher, J.C. (2008). Numerical Methods for Ordinary Differential Equations. John Willey & Sons.10.1002/9780470753767 Search in Google Scholar

11. Urbahs, A., Banovs, M., Carjova, K., Turko, V., & Feshchuk, J. (2017). Research of the Micromechanics of Composite Materials with Polymer Matrix Failure under Static Loading Using the Acoustic Emission Method. Aviation, 21 (1), 9–16.10.3846/16487788.2016.1264720 Search in Google Scholar

12. Urbahs, A., & Carjova, K. (2019). Bolting Elements of Helicopter Fuselage and Tail Boom Joints Using Acoustic Emission Amplitude and Absolute Energy Criterion. Journal of Aerospace Engineering, 32 (3), 3–12.10.1061/(ASCE)AS.1943-5525.0000963 Search in Google Scholar

13. Urbahs, A., Carjova, K., & Fescuks, J. (2017). Analysis of the Results of Acoustic Emission Diagnostics of a Structure during Helicopter Fatigue Tests. Aviation, 21 (2), 64–69. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo