Zitieren

1. Saveiev, I.V. (1982). General Physics Course (vol. I. Mechanics, Oscillations and Waves, Molecular Physics Science). Main Editorial Office of Physical and Mathematical Literature, M. (in Russian). Search in Google Scholar

2. Grigoriev, A.Yu., Grigoriev, K.A., & Malyavko, D.P. (2015). Collision of Bodies: Textbook. SPb.: ITMO University (in Russian). Search in Google Scholar

3. Strautmanis, G., Mezītis, M., Strautmane, V., & Gorbenko, A. (2018). Model of a vertical rotor with an automatic balancer with two compensating masses. In: Vibroengineering PROCEDIA, vol. 21: 35th International Conference on Vibroengineering (pp. 202–207), 13–15 December 2018, India, Delhi.10.21595/vp.2018.20105 Search in Google Scholar

4. Sperling, L., Ryzhik, B., Linz, Ch., & Duckstein, H. (2002). Simulation of Two-Plane Automatic Balancing of a Rigid Rotor. Mathematics and Computers in Simulation, 58 (4–6), 351–365.10.1016/S0378-4754(01)00377-9 Search in Google Scholar

5. Ryzhik, B., Duckstein, H., & Sperling, L. (2004). Partial Compensation of Unbalance by One- and Two Automatic Balancing Devices. International Journal of Rotating Machinery, 10 (3), 193–201.10.1155/S1023621X0400020X Search in Google Scholar

6. Gorbenko, A.N., Klimenko, N.P., & Strautmanis, G. (2017). Influence of Rotor Unbalance Increasing on the Stability of its Autobalancing. Procedia Engineering, 206, 266–271. doi: 10.1016/j.proeng.2017.10.472. Open DOISearch in Google Scholar

7. Goncharov, V., Filimonikhin, G., Nevdakha, A., & Pirogov, V. (2017). An Increase of the Balancing Capacity of Ball or Roller-Type Auto-Balancers with Reduction of Time of Achieving Auto-Balancing. Eastern-European Journal of Enterprise Technologies, 1 (7), 15–24. doi: 10.15587/1729-4061.2017.92834. Open DOISearch in Google Scholar

8. Kapitza, P.L. (1951). Dynamic stability of the pendulum at an oscillating suspension point. ZhETF, 21, 588–597 (in Russian). Search in Google Scholar

9. Butikov, E.I. (2011). An Improved Criterion for Kapitza’s Pendulum Stability. Journal of Physics A: Mathematical and Theoretical, 44, 295202.10.1088/1751-8113/44/29/295202 Search in Google Scholar

10. Butcher, J.C. (2008). Numerical Methods for Ordinary Differential Equations. John Willey & Sons.10.1002/9780470753767 Search in Google Scholar

11. Urbahs, A., Banovs, M., Carjova, K., Turko, V., & Feshchuk, J. (2017). Research of the Micromechanics of Composite Materials with Polymer Matrix Failure under Static Loading Using the Acoustic Emission Method. Aviation, 21 (1), 9–16.10.3846/16487788.2016.1264720 Search in Google Scholar

12. Urbahs, A., & Carjova, K. (2019). Bolting Elements of Helicopter Fuselage and Tail Boom Joints Using Acoustic Emission Amplitude and Absolute Energy Criterion. Journal of Aerospace Engineering, 32 (3), 3–12.10.1061/(ASCE)AS.1943-5525.0000963 Search in Google Scholar

13. Urbahs, A., Carjova, K., & Fescuks, J. (2017). Analysis of the Results of Acoustic Emission Diagnostics of a Structure during Helicopter Fatigue Tests. Aviation, 21 (2), 64–69.10.3846/16487788.2017.1335231 Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik