Uneingeschränkter Zugang

Efficiency of conversion coatings against activation of galvanized steel in model concrete pore solutions

   | 13. Feb. 2014

Zitieren

1. Pokorný P.; Vliv koroze zinkované oceli na soudržnost s betonem, Koroze a ochrana materiálu 2012, 56 (4), 119-135.10.2478/v10227-011-0020-9Search in Google Scholar

2. Ryant L., Vorel J.; Kotvení pozinkovné výztuže, laboratorní práce, SPŠS-Josefa Gočára, Praha 2008, s. 8.Search in Google Scholar

3. Huňka P., Sutner O; Srovnávací zkoušky vytahování nepozinkované a pozinkované výztuže z betonu, protokol o zkoušce. České vysoké učení technické - Kloknerův ústav, 2011.Search in Google Scholar

4. Tashiro Ch. a kol. Bond strength between C3S paste and iron, cooper and zinc wire and microstructure of interface. Cement and Concrete Research, 1983, 13, 377-382.10.1016/0008-8846(83)90037-6Search in Google Scholar

5. Macias A., Andrade C., Corrosion of galvanized steel reinforcements in alkaline solutions. (Part 1: Electrochemical results), British Corrosion Journal 1987, 22 (2).10.1179/000705987798271631Search in Google Scholar

6. Macias A., Andrade C., Corrosion of galvanized steel reinforcements in alkaline solutions (Part 2: SEM study and identifi cation of corrosion products), British Corrosion Journal 1987, 22 (2).10.1179/000705987798271749Search in Google Scholar

7. Blanco M; a kol. SEM study of the corrosion products of galvanized reinforcements immersed in solutions in the pH range 12,6-13,6, British Corrosion Journal 1984, 19 (1).10.1179/000705984798273524Search in Google Scholar

8. Eriksson H.; a kol. Příručka žárového zinkování, 3rd ed.; AČSZ Ostrava, 2009.Search in Google Scholar

9. Hamad B.; a kol. Bond strength of hot dip galvanized reinforcement in normal strength concrete structures. Construction and Building Materials 2005, 19, 275-283.Search in Google Scholar

10. Mike J., Bond of hot dip galvanized reinforcement in concrete. Master of engineering thesis, The American university of Beirut-Department of civil and environmental engineering of the faculty of engineering and architecture, 2001.Search in Google Scholar

11. Kendig M.W., Buchheit R.G.; Corrosion inhibition of aluminium and aluminium alloys by soluble chromates, chromate coatings, and chromate-free coatings, Corrosion 2003, 59 (5), 379-400.10.5006/1.3277570Search in Google Scholar

12. Krejčík V. Povrchová úprava kovů I; SNTL: Praha, 1987.Search in Google Scholar

13. Nařízení komise EU č. 348/2013 ze 17. 4. 2013 (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:108:0001:0005:CS:PDF; cit. 4.11. 2013) s. 5.Search in Google Scholar

14. Nařízení evropského parlamentu a rady (ES) č. 1907/2006 o registraci hodnocení, povolování a omezování chemických látek, o zřízení Evropské agentury pro chemické látky, o změně směrnice 1999/45/ES a o zrušení nařízení rady (EHS) č. 793/93, nařízení komise (ES) číslo 1488/94, směrnice Rady 76/769/EHS a směrnice Komise 91/155/ EHS, 93/67/EHS, 93/67/EHS, 93/105/ES a 2000/21/ ES (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:136:0003:0280:cs:PDF; cit. 4. 11. 2013), s. 278.Search in Google Scholar

15. Kortenkamp A. a kol. The generation of DNA singlestrand breakcs during the reduction of chromate by ascorbic acid and/or glutathione in vitro, Environmental Health Perspectives 1994, 102 (3), 237-241.10.1289/ehp.94102s3237Search in Google Scholar

16. Suyuki Z. a kol, Reduction of hexavalent chromium bz ascorbic acid and glutathione with special reference to the rat lung, Archives of Toxicology 1990, 64, 167-178.10.1007/BF02010721Search in Google Scholar

17. Kraus V. Povrchy a jejich úpravy, 1st, ZČU Plzeň, 2000.Search in Google Scholar

18. Kocáb J. a kol.: Letadlové pohonné jednotky, 2nd, Nakladatelství dopravy a spojů, Praha 1991.Search in Google Scholar

19. Magalhães A.A.O. a kol.: Electrochemical characterization of chromate coatings on galvanized steel, ElectrochimicaActa 1999, 44, 4281-4287.10.1016/S0013-4686(99)00143-7Search in Google Scholar

20. Kouřil M., Koroze pozinkované oceli v modelovém pórovém roztoku betonu, 9. Konference žárového zinkování, 2003, 23-30.Search in Google Scholar

21. Ostrá V., Žárově zinkovaná ocelová výztuž do betonu, 15th Žárového zinkování, 2009, 173-179.Search in Google Scholar

22. Hluchý M., Haněk V., Strojírenská technologie 2-2díl, (Koroze, Základy obrábění, Výrobní postupy), 2. vydání, Scientia, Praha, 2001.Search in Google Scholar

23. Szelag P., osobní sdělení.Search in Google Scholar

24. Pokorný P., Mejta V., Szelag P., Příspěvek k teorii tvorby, kategorizaci a aplikaci fosfátových povlaků, Koroze aochrana materiálu 2011, 55 (4), 146-153.Search in Google Scholar

25. Pokorný P., Mejta V., Szelag P., Vylepšení potikorozních vlastností nátěrů prostřednictvím fosfátové povrchové úpravy, Koroze a ochrana materiálu 2010, 54 (4), 196-198.Search in Google Scholar

26. Górecki G., Iron phosphate coatings-composition and corrosion resistance, Corrosion 1992, 48 (7), 613-61610.5006/1.3315980Search in Google Scholar

27. Pokorný P., Klasifi kace fosfátových povlaků, Tribotechnika2012, 6, 44-47.Search in Google Scholar

28. Purnendu P. a kol., Room temperature metathetic synthesis and characterization of α-hopeite, Zn3(PO4)2.4H2O, Materials Research Bulletin 2008, 43, 1836-1841.10.1016/j.materresbull.2007.07.005Search in Google Scholar

29. Li L., Chhiu-Tsu L. SEM-EDS Investigation of Self- Phosphating Coatings, Ind. Eng. Chem. Res. 1994, 33, 3241-3246.Search in Google Scholar

30. Pokorný P., Szelag P., Využití manganatého fosfátování při usnadnění záběhu točivých strojních součástí a snížení vlečného tření, Tribotechnika 2012, 4, 24-25.Search in Google Scholar

31. Chao-Min W. a kol. Effect of heat treatment on microstructure and electrochemical behavior of manganese phosphate coating, Material Chemistry and Physics 2007, 102, 207-213.10.1016/j.matchemphys.2006.12.012Search in Google Scholar

32. Rausch W., Die Phosphatierung von Metallen, 2nd ed.; Eugen G. Leuze Verlag, Frankfurt am Main, 1988.Search in Google Scholar

33. Weng D., Jokiel P., Uebleis A., Boehni H., Corrosion and protection characteristics of zinc and manganese phosphate coatings, Surface and Coatings Technology1996, 88, 147-156.10.1016/S0257-8972(96)02860-5Search in Google Scholar

34. Ogle K. a kol. The alkaline stability of phosphate coatings I: ICP atomic emission spectroelectrochemistry, CorrosionScience 2004, 46, 975-995.10.1016/S0010-938X(03)00182-3Search in Google Scholar

35. Tomandl A. a kol. The alkaline stability of phosphate coatings II: in situ Raman spectroscopy, CorrosionScience 2004, 46, 997-1011.10.1016/S0010-938X(03)00183-5Search in Google Scholar

36. Jiang L. a kol. The degradation of phosphate conversion coatings by electrochemically generated hydroxide, Corrosion Science 2012, 55, 76-8910.1016/j.corsci.2011.10.004Search in Google Scholar

37. Girčiene O., a kol. Corrosion behavior of phosphate reinforcing steel in alkaline media contaminated with chloride ions, Chemija 2008, 19 (1), 14-19.Search in Google Scholar

38. Bikulčius G.a kol. Corrosion behaviour in alkaline media of steel with various conversion coatings in concrete, Russian Journal of Applied Chemistry 2003, 76 (11), 1809-1813.10.1023/B:RJAC.0000018678.02146.d7Search in Google Scholar

39. Simescu F., Idrissi H., Effect of zinc phosphate chemical conversion coating on corrosion behavior of mild steel in alkaline medium: protection of rebars in reinforced concrete, Science and Technology of Advanced Materials2008, 9, 10 s.10.1088/1468-6996/9/4/045009509965127878037Search in Google Scholar

40. Simescu F., Idrissi H., Corrosion behaviour in alkaline medium of zinc phosphate coated steel obtained by cathodic electrochemical treatment, Corrosion Science2009, 51, 833-840.10.1016/j.corsci.2009.01.010Search in Google Scholar

41. Jalili M.M. a kol. The use of inorganic conversion coatings to enhance te corrosion resistance of reinforcement and the bond strength at te rebar/concrete, Construction andBuilding Materials 2009, 23, 233-238.10.1016/j.conbuildmat.2007.12.011Search in Google Scholar

42. Pokorný P., Szelag P., Oxalátování a tažení trub z korozivzdorných ocelí, Tribotechnika 2012, 4 (4), 18-19.Search in Google Scholar

43. Chocholoušek J., osobní sděleníSearch in Google Scholar

44. Detner H.W.,Elze J. Handbuch der Galvanotechnik (Band III), Carl Hanser Verlag, Mϋnchen, 1969.Search in Google Scholar

45. US Patent 3632452Search in Google Scholar

46. US Patent 3806375Search in Google Scholar

47. US Patent 3121033Search in Google Scholar

48. US Patent WO 03/083171 A1Search in Google Scholar

49. Prošek T., et al. Konverzní a orgnické povlaky s chromem v oxidačním stavu VI a jejich alternativy. Koroze a ochranamateriálu 2005, 49 (2), 27-33.Search in Google Scholar

50. Fahrenholz W.G. a kol. Characterization of cerium-based conversion coating for corrosion protection of aluminium alloys, Surface and Coating Technology 2002, 155, 208-213.10.1016/S0257-8972(02)00062-2Search in Google Scholar

51. Lin X., An environmentally compliant cerium-based conversion coating for aluminium protection, PhD thesis, University of Missoury-Rolla, 1998.Search in Google Scholar

52. Zhou H., Charakterization of conversion coating on 7075- T6 Al alloy, M.S. Thesis, University of Missoury-Rolla, 2001.Search in Google Scholar

53. Rivera B.F. a kol. Deposition and characterization of cerium oxide conversion coatings on aluminium alloy 7075-T6, Surface and coating technology 2004, 176, 349-356.10.1016/S0257-8972(03)00742-4Search in Google Scholar

54. Bohm S. a kol. Kinetic and mechanistick studies of rare earth-rich protective fi lm formation using in situ ellipsometry, Journal of the Electrochemical Society 2000, 147 (9), 3286.10.1149/1.1393897Search in Google Scholar

55. Aramaki K., Treatment of zinc surface with cerium (III) nitrate to prevent zinc corrosion in aerated 0.5 M NaCl. Corrosion Science 2001, 43 (11), 2201-221510.1016/S0010-938X(00)00189-XSearch in Google Scholar

56. Mirghasem H., a kol. Corrosion protection of electrogalvanized steel by green conversion coatings, Journal ofrare Earths 2007, 25, 537-543.10.1016/S1002-0721(07)60558-4Search in Google Scholar

57. Montemor M.F., Composition and behaviour of cerium fi lm on galvanized steel, Progress in Organic Coatings2001, 43, 274-281.10.1016/S0300-9440(01)00209-0Search in Google Scholar

58. Lu J. a kol. Growth and corrosion behaviour of rare earth fi lm on hot-dip galvanized steel, Transactions ofNonferrous Metals Society of China 2006, 16, 1397-1401.10.1016/S1003-6326(07)60027-2Search in Google Scholar

59. Arenas M.A. Surface characterisation of cerium layers on galvanized steel, Surface and Coating Technology 2004, 187, 320-325.10.1016/j.surfcoat.2004.02.033Search in Google Scholar

60. Arenas M.A a kol., Infl uence of the conversion coating on the corrosion of galvanized reinforcing steel, Cement andConcrete Composites 2006, 28, 267-275.10.1016/j.cemconcomp.2006.01.010Search in Google Scholar

61. Sánchez M. kol., Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media, Cement and ConcreteComposites 2006, 28, 256-266.10.1016/j.cemconcomp.2006.01.004Search in Google Scholar

62. Thierry M., a kol. Organosilane technology in coating applications (Review and prespectives), Dow Corning free list (http://www.dowcorning.com/content/publishedlit/ 26-1402-01.pdf) s.16.Search in Google Scholar

63. http://www.dynasylan.com/product/dynasylan/en/Pages/default.aspxSearch in Google Scholar

64. Palanivel V. a kol. Nanoparticle-fi lled silane fi lms as chromate replacements for aluminium alloys, Progress inOrganic Coatings 2003, 384-392.10.1016/j.porgcoat.2003.08.015Search in Google Scholar

56. http://www.chenchem.com.tw/00/Silane.pdfSearch in Google Scholar

66. Montemor M.F. a kol; The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modifi ed with microsilica, Surface and CoatingsTechnology 2006, 200, 2875-2885.Search in Google Scholar

67. Bexell U a kol. A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane, Surface and Coatings Technology 2007, 201, 4734-4742.10.1016/j.surfcoat.2006.10.014Search in Google Scholar

68. Torry S.A. a kol; Kinetic analysis of organosilane hydrolysis and condensation, International Journal of Adhesionand Adhesives 2006, 26, 40-49.10.1016/j.ijadhadh.2005.03.008Search in Google Scholar

69. McMurry J; Organická chemie, 1. Vydání, VUTIUM, 2007, Brno.Search in Google Scholar

70. Hostetler M.H; Reactions of primary organosilnes on transition metal surfaces. Identifi cation of the fi rst surfacebound silylynes, J. Am. Chem. Soc 1994, 116, 11608-11609.Search in Google Scholar

71. Aykasheva O.S. a kol; Usage of silanes when making protective coatings for metal by UV curing (http://archive.nbuv.gov.ua/portal/chem_biol/khphtp/2010_1_3/23.pdf), s. 333-337.Search in Google Scholar

72. Graeve I. De; Silane coating of metal substrates (http://www.sintef.no/static/mt/norlight/ICEPAM/03-IDeGraeve_Brussels.pdf), 4.Search in Google Scholar

73. Kong G., a kol. Post treatment of silane and cerium salt as chromate replacers on galvanized steel, Journal of RareEarths 2009, 27 (1), 163-168.10.1016/S1002-0721(08)60213-6Search in Google Scholar

74. Peng T. a kol., Rare earth and silane as chromate replacers for corrosion protection on galvanized steel, Journal ofRare Earths 2009, 27 (1), 159-163.10.1016/S1002-0721(08)60212-4Search in Google Scholar

75. Ferreira M.G.S. a kol., Silanes and rare earth salts as chromate replacers for pre-treatments on galvanized steel, Electrochimica Acta 2004, 49, 2927-2935.10.1016/j.electacta.2004.01.051Search in Google Scholar

76. Montemor M.F. a kol., Composition and corrosion behaviour of galvanized steel treated with rare-earth salts:the effect of the cation, Progress in Organic Coatings2002, 44, 111-120.10.1016/S0300-9440(01)00250-8Search in Google Scholar

77. Montemor M.F. a kol; Modifi cation of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates, Progress in OrganicCoatings 2006, 57, 67-77.Search in Google Scholar

78. Wienerová K. a kol; Koroze a ochrana zinkované oceli v prostředí betonu, Koroze a ochrana materiálu 2010, 54 (4), 148-154. Search in Google Scholar

eISSN:
1804-1213
ISSN:
0452-599X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas