Murine hepatic proteome adaptation to high-fat diets with different contents of saturated fatty acids and linoleic acid : α-linolenic acid polyunsaturated fatty acid ratios
Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus UniversityToruń, Poland
Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityToruń, Poland
Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus UniversityToruń, Poland
Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityToruń, Poland
Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus UniversityToruń, Poland
Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityToruń, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Aktas H., Halperin J.A.: Translational Regulation of Gene Expression by ω-3 Fatty Acids. J Nutr 2004, 134, 2487S–2491S, doi: 10.1093/jn/134.9.2487S.AktasH.HalperinJ.A.:Translational Regulation of Gene Expression by ω-3 Fatty Acids.J Nutr2004,134,2487S–2491S, doi:10.1093/jn/134.9.2487S.Open DOISearch in Google Scholar
Alves-Bezerra M., Cohen D.E.: Triglyceride Metabolism in the Liver. Compr Physiol 2017, 81, 1–8, doi: 10.1002/cphy.c170012.Alves-BezerraM.CohenD.E.:Triglyceride Metabolism in the Liver.Compr Physiol2017,81,1–8, doi:10.1002/cphy.c170012.Open DOISearch in Google Scholar
Baldi A., Lombardi D., Russo P., Palescandolo E., De Luca A., Santini D., Baldi F., Rossiello L., Dell’Anna M.L., Mastrofrancesco A., Maresca V., Flori E., Natali P.G., Picardo M., Paggi M.G.: Ferritin Contributes to Melanoma Progression by Modulating Cell Growth and Sensitivity to Oxidative Stress. Clin Cancer Res 2005, 119, 3175–3183, doi: 10.1158/1078-0432.CCR-04-0631.BaldiA.LombardiD.RussoP.PalescandoloE.De LucaA.SantiniD.BaldiF.RossielloL.Dell’AnnaM.L.MastrofrancescoA.MarescaV.FloriE.NataliP.G.PicardoM.PaggiM.G.:Ferritin Contributes to Melanoma Progression by Modulating Cell Growth and Sensitivity to Oxidative Stress.Clin Cancer Res2005,119,3175–3183, doi:10.1158/1078-0432.CCR-04-0631.Open DOISearch in Google Scholar
Balić A., Vlašić D., Žužul K., Marinović B., Bukvić Mokos Z.: Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2020, 213, 741, doi: 10.3390/ijms21030741.BalićA.VlašićD.ŽužulK.MarinovićB.Bukvić MokosZ.:Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases.Int J Mol Sci2020,213,741, doi:10.3390/ijms21030741.Open DOISearch in Google Scholar
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.-H., Pagès F., Trajanoski Z., Galon J.: ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 258, 1091–1093, doi: 10.1093/bioinformatics/btp101.BindeaG.MlecnikB.HacklH.CharoentongP.TosoliniM.KirilovskyA.FridmanW.-H.PagèsF.TrajanoskiZ.GalonJ.:ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.Bioinformatics2009,258,1091–1093, doi:10.1093/bioinformatics/btp101.Open DOISearch in Google Scholar
Bresgen N., Eckl P.M.: Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015, 52, 808–847, doi: 10.3390/biom5020808.BresgenN.EcklP.M.:Oxidative stress and the homeodynamics of iron metabolism.Biomolecules2015,52,808–847, doi:10.3390/biom5020808.Open DOISearch in Google Scholar
Bu W., Liu R., Cheung-Lau J.C., Dmochowski I.J., Loll P.J., Eckenhoff R.G.: Ferritin couples iron and fatty acid metabolism. FASEB J 2012, 266, 2394–2400, doi: 10.1096/fj.11-198853.BuW.LiuR.Cheung-LauJ.C.DmochowskiI.J.LollP.J.EckenhoffR.G.:Ferritin couples iron and fatty acid metabolism.FASEB J2012,266,2394–2400, doi:10.1096/fj.11-198853.Open DOISearch in Google Scholar
Chilton F.H., Dutta R., Reynolds L.M., Sergeant S., Mathias R.A., Seeds M.C.: Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017, 911, 1165, doi: 10.3390/nu9111165.ChiltonF.H.DuttaR.ReynoldsL.M.SergeantS.MathiasR.A.SeedsM.C.:Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases.Nutrients2017,911,1165, doi:10.3390/nu9111165.Open DOISearch in Google Scholar
Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J.: Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005, 812, 341–354, doi: 10.1093/ajcn.81.2.341.CordainL.EatonS.B.SebastianA.MannN.LindebergS.WatkinsB.A.O’KeefeJ.H.Brand-MillerJ.:Origins and evolution of the Western diet: health implications for the 21st century.Am J Clin Nutr2005,812,341–354, doi:10.1093/ajcn.81.2.341.Open DOISearch in Google Scholar
Djuricic I., Calder P.C.: Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 137, 2421, doi: 10.3390/nu13072421.DjuricicI.CalderP.C.:Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021.Nutrients2021,137,2421, doi:10.3390/nu13072421.Open DOISearch in Google Scholar
Fisher A.B., Vasquez-Medina J.P., Dodia C., Sorokina E.M., Tao J.Q., Feinstein S.I.: Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol 2018, 14, 41–46, doi: 10.1016/j.redox. 2017.08.008.FisherA.B.Vasquez-MedinaJ.P.DodiaC.SorokinaE.M.TaoJ.Q.FeinsteinS.I.:Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes.Redox Biol2018,14,41–46, doi:10.1016/j.redox.2017.08.008.Open DOISearch in Google Scholar
Gabbs M., Leng S., Devassy J.G., Monirujjaman M., Aukema H.M.: Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr 2015, 65, 513–540, doi: 10.3945/an.114.007732.GabbsM.LengS.DevassyJ.G.MonirujjamanM.AukemaH.M.:Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs.Adv Nutr2015,65,513–540, doi:10.3945/an.114.007732.Open DOISearch in Google Scholar
Grewal T., Enrich C., Rentero C., Buechler C.: Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019, 2014, 3449, doi: 10.3390/ijms20143449.GrewalT.EnrichC.RenteroC.BuechlerC.:Annexins in Adipose Tissue: Novel Players in Obesity.Int J Mol Sci2019,2014,3449, doi:10.3390/ijms20143449.Open DOISearch in Google Scholar
Gromovsky A.D., Schugar R.C., Brown A.L., Helsley R.N., Burrows A.C., Ferguson D., Zhang R., Sansbury B.E., Lee R.G., Morton R.E., Allende D.S., Parks J.S., Spite M., Brown J.M.: Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Proinflammatory and Proresolving Lipid Mediators. Arterioscler Thromb Vasc Biol 2018, 381, 218–231, doi: 10.1161/ATVBAHA.117.309660.GromovskyA.D.SchugarR.C.BrownA.L.HelsleyR.N.BurrowsA.C.FergusonD.ZhangR.SansburyB.E.LeeR.G.MortonR.E.AllendeD.S.ParksJ.S.SpiteM.BrownJ.M.:Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Proinflammatory and Proresolving Lipid Mediators.Arterioscler Thromb Vasc Biol2018,381,218–231, doi:10.1161/ATVBAHA.117.309660.Open DOISearch in Google Scholar
Harris W.S.: The Omega-6 : Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot Essent Fat Acid 2018, 132, 34–40, doi: 10.1016/j.plefa.2018.03.003.HarrisW.S.:The Omega-6 : Omega-3 ratio: A critical appraisal and possible successor.Prostaglandins Leukot Essent Fat Acid2018,132,34–40, doi:10.1016/j.plefa.2018.03.003.Open DOISearch in Google Scholar
Hooper L., Martin N., Jimoh O.F., Kirk C., Foster E., Abdelhamid A.S.: Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020, 5, Cd011737, doi: 10.1002/14651858.CD011737.pub2.HooperL.MartinN.JimohO.F.KirkC.FosterE.AbdelhamidA.S.:Reduction in saturated fat intake for cardiovascular disease.Cochrane Database Syst Rev2020,5,Cd011737, doi:10.1002/14651858.CD011737.pub2.Open DOISearch in Google Scholar
Ikemoto S., Takahashi M., Tsunoda N., Maruyama K., Itakura H., Ezaki O.: High-fat diet-induced hyperglycemia and obesity in mice: Differential effects of dietary oils. Metabolism 1996, 4512, 1539–1546, doi: 10.1016/s0026-0495(96)90185-7.IkemotoS.TakahashiM.TsunodaN.MaruyamaK.ItakuraH.EzakiO.:High-fat diet-induced hyperglycemia and obesity in mice: Differential effects of dietary oils.Metabolism1996,4512,1539–1546, doi:10.1016/s0026-0495(96)90185-7.Open DOISearch in Google Scholar
Jang H., Park K.: Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin Nutr 2020, 393, 765–773, doi: 10.1016/j.clnu. 2019.03.032.JangH.ParkK.:Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis.Clin Nutr2020,393,765–773, doi:10.1016/j.clnu.2019.03.032.Open DOISearch in Google Scholar
Jiang X., Zeng T., Zhang S., Zhang Y.: Comparative proteomic and bioinformatic analysis of the effects of a high-grain diet on the hepatic metabolism in lactating dairy goats. PLoS One 2013, 811, e80698, doi: 10.1371/journal.pone.0080698.JiangX.ZengT.ZhangS.ZhangY.:Comparative proteomic and bioinformatic analysis of the effects of a high-grain diet on the hepatic metabolism in lactating dairy goats.PLoS One2013,811,e80698, doi:10.1371/journal.pone.0080698.Open DOISearch in Google Scholar
Jump D.B., Tripathy S., Depner C.M.: Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr 2013, 33, 249–269, doi: 10.1146/annurev-nutr-071812-161139.JumpD.B.TripathyS.DepnerC.M.:Fatty acid-regulated transcription factors in the liver.Annu Rev Nutr2013,33,249–269, doi:10.1146/annurev-nutr-071812-161139.Open DOISearch in Google Scholar
Kagan V.E., Mao G., Qu F., Angeli J.P.F., Doll S., Croix C.S., Dar H.H., Liu B., Tyurin V.A., Ritov V.B., Kapralov A.A., Amoscato A.A., Jiang J., Anthonymuthu T., Mohammadyani D., Yang Q., Proneth B., Klein-Seetharaman J., Watkins S., Bahar I., Greenberger J., Mallampalli R.K., Stockwell B.R., Tyurina Y.Y., Conrad M., Bayır H.: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chem Biol 2017, 131, 81–90, doi: 10.1038/nchembio.2238.KaganV.E.MaoG.QuF.AngeliJ.P.F.DollS.CroixC.S.DarH.H.LiuB.TyurinV.A.RitovV.B.KapralovA.A.AmoscatoA.A.JiangJ.AnthonymuthuT.MohammadyaniD.YangQ.PronethB.Klein-SeetharamanJ.WatkinsS.BaharI.GreenbergerJ.MallampalliR.K.StockwellB.R.TyurinaY.Y.ConradM.BayırH.:Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nature Chem Biol2017,131,81–90, doi:10.1038/nchembio.2238.Open DOISearch in Google Scholar
Kaliannan K., Li X.-Y., Wang B., Pan Q., Chen C.-Y., Hao L., Xie S., Kang J.X.: Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Commun Biol 2019, 21, 276, doi: 10.1038/s42003-019-0521-4.KaliannanK.LiX.-Y.WangB.PanQ.ChenC.-Y.HaoL.XieS.KangJ.X.:Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease.Commun Biol2019,21,276, doi:10.1038/s42003-019-0521-4.Open DOISearch in Google Scholar
Kappe C., Zhang Q., Nyström T., Sjöholm A.: Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells. Diabetol Metab Syndr 2014, 6, 70, doi: 10.1186/1758-5996-6-70.KappeC.ZhangQ.NyströmT.SjöholmA.:Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells.Diabetol Metab Syndr2014,6,70, doi:10.1186/1758-5996-6-70.Open DOISearch in Google Scholar
Kasai S., Mimura J., Ozaki T., Itoh K.: Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease. Front Vet Sci 2018, 5, 242, doi: 10.3389/fvets.2018.00242.KasaiS.MimuraJ.OzakiT.ItohK.:Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease.Front Vet Sci2018,5,242, doi:10.3389/fvets.2018.00242.Open DOISearch in Google Scholar
Khateeb S., Albalawi A., Alkhedaide A.: Regulatory effect of diosgenin on lipogenic genes expression in high-fat diet-induced obesity in mice. Saudi J Biol Sci 2021, 281, 1026–1032, doi: 10.1016/j.sjbs.2020.11.045.KhateebS.AlbalawiA.AlkhedaideA.:Regulatory effect of diosgenin on lipogenic genes expression in high-fat diet-induced obesity in mice.Saudi J Biol Sci2021,281,1026–1032, doi:10.1016/j.sjbs.2020.11.045.Open DOISearch in Google Scholar
Lee J.M., Lee H., Kang S., Park W.J.: Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016, 81, 23, doi: 10.3390/nu8010023.LeeJ.M.LeeH.KangS.ParkW.J.:Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.Nutrients2016,81,23, doi:10.3390/nu8010023.Open DOISearch in Google Scholar
Lenighan Y.M., McNulty B.A., Roche H.M.: Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proc Nutr Soc 2019, 782, 234–245, doi: 10.1017/S0029665118002793.LenighanY.M.McNultyB.A.RocheH.M.:Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid.Proc Nutr Soc2019,782,234–245, doi:10.1017/S0029665118002793.Open DOISearch in Google Scholar
Lepczyński A., Herosimczyk A., Ożgo M., Marynowska M., Pawlikowska M., Barszcz M., Taciak M., Skomiał J.: Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs - a proteomic study. J Anim Physiol Anim Nutr Berl 2017, 1015, e225–e236, doi: 10.1111/jpn.12595.LepczyńskiA.HerosimczykA.OżgoM.MarynowskaM.PawlikowskaM.BarszczM.TaciakM.SkomiałJ.:Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs - a proteomic study.J Anim Physiol Anim Nutr Berl2017,1015,e225–e236, doi:10.1111/jpn.12595.Open DOISearch in Google Scholar
Licholai J.A., Nguyen K.P., Fobbs W.C., Schuster C.J., Ali M.A., Kravitz A.V.: Why Do Mice Overeat High-Fat Diets? How High-Fat Diet Alters the Regulation of Daily Caloric Intake in Mice. Obesity 2018, 266, 1026–1033, doi: 10.1002/oby.22195.LicholaiJ.A.NguyenK.P.FobbsW.C.SchusterC.J.AliM.A.KravitzA.V.:Why Do Mice Overeat High-Fat Diets? How High-Fat Diet Alters the Regulation of Daily Caloric Intake in Mice.Obesity2018,266,1026–1033, doi:10.1002/oby.22195.Open DOISearch in Google Scholar
Liput K.P., Lepczyński A., Nawrocka A., Poławska E., Ogłuszka M., Jończy A., Grzybek W., Liput M., Szostak A., Urbański P., Roszczyk A., Pareek C.S., Pierzchała M.: Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid LA, C18:2n–6 to α-Linolenic Acid ALA, C18:3n–3 Ratio on the Mouse Liver Proteome. Nutrients 2021, 135, 1678, doi: 10.3390/nu13051678.LiputK.P.LepczyńskiA.NawrockaA.PoławskaE.OgłuszkaM.JończyA.GrzybekW.LiputM.SzostakA.UrbańskiP.RoszczykA.PareekC.S.PierzchałaM.:Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid LA, C18:2n–6 to α-Linolenic Acid ALA, C18:3n–3 Ratio on the Mouse Liver Proteome.Nutrients2021,135,1678, doi:10.3390/nu13051678.Open DOISearch in Google Scholar
Liu W., Baker S.S., Baker R.D., Nowak N.J., Zhu L.: Upregulation of Hemoglobin Expression by Oxidative Stress in Hepatocytes and Its Implication in Nonalcoholic Steatohepatitis. PLoS One 2011, 69, e24363, doi: 10.1371/journal.pone.0024363.LiuW.BakerS.S.BakerR.D.NowakN.J.ZhuL.:Upregulation of Hemoglobin Expression by Oxidative Stress in Hepatocytes and Its Implication in Nonalcoholic Steatohepatitis.PLoS One2011,69,e24363, doi:10.1371/journal.pone.0024363.Open DOISearch in Google Scholar
Luo M., Mengos A.E., Stubblefield T.M., Mandarino L.J.: High fat diet-induced changes in hepatic protein abundance in mice. J Proteomics Bioinform 2012, 53, 60–66, doi: 10.4172/jpb.1000214.LuoM.MengosA.E.StubblefieldT.M.MandarinoL.J.:High fat diet-induced changes in hepatic protein abundance in mice.J Proteomics Bioinform2012,53,60–66, doi:10.4172/jpb.1000214.Open DOISearch in Google Scholar
Mansouri A., Gattolliat C.H., Asselah T.: Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 1553, 629–647, doi: 10.1053/j.gastro.2018.06.083.MansouriA.GattolliatC.H.AsselahT.:Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases.Gastroenterology2018,1553,629–647, doi:10.1053/j.gastro.2018.06.083.Open DOISearch in Google Scholar
Manzi L., Costantini L., Molinari R., Merendino N.: Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer. BioMed Res Int 2015, 2015, 137097, doi: 10.1155/2015/137097.ManziL.CostantiniL.MolinariR.MerendinoN.:Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer.BioMed Res Int2015,2015,137097, doi:10.1155/2015/137097.Open DOISearch in Google Scholar
Mello T., Zanieri F., Ceni E., Galli A.: Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. Oxidative Med Cell Longev 2016, 2016, 8327410, doi: 10.1155/2016/8327410.MelloT.ZanieriF.CeniE.GalliA.:Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective.Oxidative Med Cell Longev2016,2016,8327410, doi:10.1155/2016/8327410.Open DOISearch in Google Scholar
Miller C.N., Morton H.P., Cooney P.T., Winters T.G., Ramseur K.R., Rayalam S., Della-Fera M.A., Baile C.A., Brown L.M.: Acute exposure to high-fat diets increases hepatic expression of genes related to cell repair and remodeling in female rats. Nutr Res 2014, 341, 85–93, doi: 10.1016/j.nutres.2013.10.010.MillerC.N.MortonH.P.CooneyP.T.WintersT.G.RamseurK.R.RayalamS.Della-FeraM.A.BaileC.A.BrownL.M.:Acute exposure to high-fat diets increases hepatic expression of genes related to cell repair and remodeling in female rats.Nutr Res2014,341,85–93, doi:10.1016/j.nutres.2013.10.010.Open DOISearch in Google Scholar
Park H.G., Engel M.G., Vogt-Lowell K., Lawrence P., Kothapalli K.S., Brenna J.T.: The role of fatty acid desaturase FADS genes in oleic acid metabolism: FADS1 Δ7 desaturates 11-20:1 to 7,11-20:2. Prostaglandins Leukot Essent Fat Acid 2018, 128, 21–25, doi: 10.1016/j.plefa.2017.11.004.ParkH.G.EngelM.G.Vogt-LowellK.LawrenceP.KothapalliK.S.BrennaJ.T.:The role of fatty acid desaturase FADS genes in oleic acid metabolism: FADS1 Δ7 desaturates 11-20:1 to 7,11-20:2.Prostaglandins Leukot Essent Fat Acid2018,128,21–25, doi:10.1016/j.plefa.2017.11.004.Open DOISearch in Google Scholar
Sakai C., Ishida M., Ohba H., Yamashita H., Uchida H., Yoshizumi M., Ishida T.: Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS One 2017, 1211, e0187934, doi: 10.1371/journal.pone.0187934.SakaiC.IshidaM.OhbaH.YamashitaH.UchidaH.YoshizumiM.IshidaT.:Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells.PLoS One2017,1211,e0187934, doi:10.1371/journal.pone.0187934.Open DOISearch in Google Scholar
Sanchez J.C., Chiappe D., Converset V., Hoogland C., Binz P.A., Paesano S., Appel R.D., Wang S., Sennitt M., Nolan A., Cawthorne M.A., Hochstrasser D.F.: The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 2001, 11, 136–163, doi: 10.1002/1615-9861(200101)1:1<136::AID-PROT136>3.0.CO;2-1.SanchezJ.C.ChiappeD.ConversetV.HooglandC.BinzP.A.PaesanoS.AppelR.D.WangS.SennittM.NolanA.CawthorneM.A.HochstrasserD.F.:The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity.Proteomics2001,11,136–163, doi:10.1002/1615-9861(200101)1:1<136::AID-PROT136>3.0.CO;2-1.Open DOISearch in Google Scholar
Son H.-K., Xiang H., Park S., Lee J., Lee J.-J., Jung S., Ha J.-H.: Partial Replacement of Dietary Fat with Polyunsaturated Fatty Acids Attenuates the Lipopolysaccharide-Induced Hepatic Inflammation in Sprague-Dawley Rats Fed a High-Fat Diet. Int J Environ Res Public Health 2021, 18, 10986, doi: 10.3390/ijerph182010986.SonH.-K.XiangH.ParkS.LeeJ.LeeJ.-J.JungS.HaJ.-H.:Partial Replacement of Dietary Fat with Polyunsaturated Fatty Acids Attenuates the Lipopolysaccharide-Induced Hepatic Inflammation in Sprague-Dawley Rats Fed a High-Fat Diet.Int J Environ Res Public Health2021,18,10986, doi:10.3390/ijerph182010986.Open DOISearch in Google Scholar
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C.: The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl Acids Res 2021, 49, D605–D612, doi: 10.1093/nar/gkaa1074.SzklarczykD.GableA.L.NastouK.C.LyonD.KirschR.PyysaloS.DonchevaN.T.LegeayM.FangT.BorkP.JensenL.J.von MeringC.:The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucl Acids Res2021,49,D605–D612, doi:10.1093/nar/gkaa1074.Open DOISearch in Google Scholar
Varela-López A., Quiles J.L., Cordero M., Giampieri F., Bullón P.: Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease. Antioxidants 2015, 42, 322–344, doi: 10.3390/antiox4020322.Varela-LópezA.QuilesJ.L.CorderoM.GiampieriF.BullónP.:Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease.Antioxidants2015,42,322–344, doi:10.3390/antiox4020322.Open DOISearch in Google Scholar
Veredas F.J., Cantón F.R., Aledo J.C.: Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions. Sci Rep 2017, 71, 40403, doi: 10.1038/srep40403.VeredasF.J.CantónF.R.AledoJ.C.:Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions.Sci Rep2017,71,40403, doi:10.1038/srep40403.Open DOISearch in Google Scholar
Wood K.E., Mantzioris E., Gibson R.A., Ramsden C.E., Muhlhausler B.S.: The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid n-3 LCPUFA status in human adults: A systematic review and commentary. Prostaglandin Leukot Essent Fat Acid 2015, 95, 47–55, doi: 10.1016/j.plefa.2015.01.001.WoodK.E.MantziorisE.GibsonR.A.RamsdenC.E.MuhlhauslerB.S.:The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid n-3 LCPUFA status in human adults: A systematic review and commentary.Prostaglandin Leukot Essent Fat Acid2015,95,47–55, doi:10.1016/j.plefa.2015.01.001.Open DOISearch in Google Scholar
Xu F., Guo M., Huang W., Feng L., Zhu J., Luo K., Gao J., Zheng B., Kong L.-D., Pang T., Wu X., Xu Q.: Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol 2020, 36, 101634–101634, doi: 10.1016/j.redox.2020.101634.XuF.GuoM.HuangW.FengL.ZhuJ.LuoK.GaoJ.ZhengB.KongL.-D.PangT.WuX.XuQ.:Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH.Redox Biol2020,36,101634–101634, doi:10.1016/j.redox.2020.101634.Open DOISearch in Google Scholar
Yadav R.K., Singh M., Roy S., Ansari M.N., Saeedan A.S., Kaithwas G.: Modulation of oxidative stress response by flaxseed oil: Role of lipid peroxidation and underlying mechanisms. Prostaglandins Other Lipid Mediat 2018, 135, 21–26, doi: 10.1016/j.prostaglandins.2018.02.003.YadavR.K.SinghM.RoyS.AnsariM.N.SaeedanA.S.KaithwasG.:Modulation of oxidative stress response by flaxseed oil: Role of lipid peroxidation and underlying mechanisms.Prostaglandins Other Lipid Mediat2018,135,21–26, doi:10.1016/j.prostaglandins.2018.02.003.Open DOISearch in Google Scholar
Yang W.S., Kim K.J., Gaschler M.M., Patel M., Shchepinov M.S., Stockwell B.R.: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Nat Acad Sci 2016, 11334, E4966–E4975, doi: 10.1073/pnas.1603244113.YangW.S.KimK.J.GaschlerM.M.PatelM.ShchepinovM.S.StockwellB.R.:Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc Nat Acad Sci2016,11334,E4966–E4975, doi:10.1073/pnas.1603244113.Open DOISearch in Google Scholar
Yi S.S., Oh S.J., Kim I.Y., Yeom H.J., Yeom S.C., Hwang S.Y., Seong J.K.: Proteomic analysis of liver in miniature pigs according to developmental stages using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Lab Anim Res 2013, 293, 162–167, doi: 10.5625/lar.2013.29.3.162.YiS.S.OhS.J.KimI.Y.YeomH.J.YeomS.C.HwangS.Y.SeongJ.K.:Proteomic analysis of liver in miniature pigs according to developmental stages using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry.Lab Anim Res2013,293,162–167, doi:10.5625/lar.2013.29.3.162.Open DOISearch in Google Scholar
Yuan T., Fan W.B., Cong Y., Xu H.D., Li C.J., Meng J., Bao N.R., Zhao J.N.: Linoleic acid induces red blood cells and hemoglobin damage via oxidative mechanism. Int J Clin Exp Pathol 2015, 85, 5044–5052.YuanT.FanW.B.CongY.XuH.D.LiC.J.MengJ.BaoN.R.ZhaoJ.N.:Linoleic acid induces red blood cells and hemoglobin damage via oxidative mechanism.Int J Clin Exp Pathol2015,85,5044–5052.Search in Google Scholar
Zhang Y., Xie Z., Zhou G., Zhang H., Lu J., Zhang W.J.: Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic beta-cells. Endocrinology 2010, 15110, 4688–4695, doi: 10.1210/en.2009-1185.ZhangY.XieZ.ZhouG.ZhangH.LuJ.ZhangW.J.:Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic beta-cells.Endocrinology2010,15110,4688–4695, doi:10.1210/en.2009-1185.Open DOISearch in Google Scholar