Evapotranspiration Estimation Using Machine Learning Methods
29. Dez. 2023
Über diesen Artikel
Online veröffentlicht: 29. Dez. 2023
Seitenbereich: 35 - 44
Eingereicht: 01. Sept. 2023
Akzeptiert: 01. Nov. 2023
DOI: https://doi.org/10.2478/johr-2023-0033
Schlüsselwörter
© 2023 Waldemar Treder et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Pearson correlation coefficients between daily evapotranspiration (ETo) and meteorological data
SR | Tavg | Tmax | RH | U2 | Ra | VPD | #D | |
---|---|---|---|---|---|---|---|---|
ETo | 0.94 | 0.66 | 0.72 | −0.69 | 0.05 | 0.62 | 0.82 | −0.41 |
Statistical analysis of the performance of the RT, BRT, RF, and ANN models in estimating daily ETo with two different meteorological input datasets
Model | Radiation | R2 | Slope | MSE | RMSE |
---|---|---|---|---|---|
Regression trees | + | 0.911 | 0.911 | 0.108 | 0.329 |
− | 0.813 | 0.813 | 0.228 | 0.478 | |
Boosted trees | + | 0.942 | 0.931 | 0.073 | 0.269 |
− | 0.834 | 0.825 | 0.205 | 0.453 | |
Random forests | + | 0.952 | 0.895 | 0.066 | 0.256 |
− | 0.841 | 0.799 | 0.207 | 0.455 | |
Artificial neural networks | + | 0.963 | 0.947 | 0.023 | 0.152 |
− | 0.870 | 0.843 | 0.082 | 0.286 |