Uneingeschränkter Zugang

Design of current sources for load common mode optimization


Zitieren

Boone KG., Holder DS. Current approaches to analogue instrumentation design in electrical impedance tomography. Physiological measurement, 1996, 17(4): 229. https://doi.org/10.1088/0967-3334/17/4/001BooneKG.HolderDSCurrent approaches to analogue instrumentation design in electrical impedance tomographyPhysiological measurement1996174229https://doi.org/10.1088/0967-3334/17/4/00110.1088/0967-3334/17/4/0018953622Search in Google Scholar

Aberg P Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE transactions on biomedical engineering, 2004, 51(12): 20972102. https://doi.org/10.1109/TBME.2004.83652AbergPSkin cancer identification using multifrequency electrical impedance-a potential screening toolIEEE transactions on biomedical engineering20045112https://doi.org/10.1109/TBME.2004.8365210.1109/TBME.2004.83652315605856Search in Google Scholar

Yang Y, Wang J. A design of bioimpedance spectrometer for early detection of pressure ulcer. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006. p. 6602-6604.YangYWangJA design of bioimpedance spectrometer for early detection of pressure ulcerEngineering in Medicine and Biology Society, 2005IEEE-EMBS 2005. 27th Annual International Conference of theIEEE20066602660410.1109/IEMBS.2005.161601417281784Search in Google Scholar

Seoane F; Bragós R; Lindecrantz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach. In: Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. IEEE, 2006. p. 51215125. https://doi.org/10.1109/IEMBS.2006.259566SeoaneFBragósRLindecrantzKCurrent source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approachEngineering in Medicine and Biology Society2006EMBS'06. 28th Annual International Conference of the IEEEIEEE2006. p51215125https://doi.org/10.1109/IEMBS.2006.25956610.1109/IEMBS.2006.25956617945876Search in Google Scholar

Mohamadou Y Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Measurement Science and Technology, 2012, 23.10: 105703.MohamadouYPerformance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current sourceMeasurement Science and Technology2012231010570310.1088/0957-0233/23/10/105703Search in Google Scholar

Sansen W, Geeraerts B, Van Petegem W, Dehaene W, Steyaert M. Voltage versus current driven high frequency EIT systems. In: Biomedical Engineering Days, 1992. Proceedings of the 1992 International. IEEE, 1992. p. 102-106. https://doi.org/10.1109/IBED.1992.24707SansenWGeeraertsBVan PetegemWDehaeneWSteyaertMVoltage versus current driven high frequency EIT systemsBiomedical Engineering Days1992Proceedings of the 1992 InternationalIEEE1992102106https://doi.org/10.1109/IBED.1992.2470710.1109/IEMBS.1992.590099Search in Google Scholar

Qureshi TR, Chatwin C & Wang W. (2013). Bio-impedance excitation system: A comparison of voltage source and current source designs. APCBEE Procedia, 7, 42-47. https://doi.org/10.1016/j.apcbee.2013.08.01QureshiTRChatwinCWangW.2013Bio-impedance excitation system: A comparison of voltage source and current source designsAPCBEE Procedia74247https://doi.org/10.1016/j.apcbee.2013.08.0110.1016/j.apcbee.2013.08.010Search in Google Scholar

Mohamadou Y, Oh TI, Wi H, Sohal H, Farooq A, Woo EJ & McEwan AL (2012). Performance evaluation of wideband bioimpedance spectroscopy using constant voltage source and constant current source. Measurement Science and Technology, 23(10), 105703. https://doi.org/10.1088/0957-0233/23/10/10570MohamadouYOhTIWiHSohalHFarooqAWooEJMcEwanAL2012Performance evaluation of wideband bioimpedance spectroscopy using constant voltage source and constant current sourceMeasurement Science and Technology2310105703https://doi.org/10.1088/0957-0233/23/10/1057010.1088/0957-0233/23/10/105703Search in Google Scholar

Hong H, Demosthenous A, Triantis IF, Langlois P, Bayford R. A high output impedance CMOS current driver for bioimpedance measurements. In: Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE. IEEE, 2010. p. 230-233. https://doi.org/10.1109/BIOCAS.2010.570961HongHDemosthenousATriantisIFLangloisPBayfordRA high output impedance CMOS current driver for bioimpedance measurementsBiomedical Circuits and Systems Conference (BioCAS), 2010 IEEEIEEE2010230233https://doi.org/10.1109/BIOCAS.2010.57096110.1109/BIOCAS.2010.5709613Search in Google Scholar

Tucker AS, Fox RM, Sadleir RJ. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7.1: 63-70. https://doi.org/10.1109/TBCAS.2012.219911TuckerASFoxRMSadleirRJBiocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Transactions on Biomedical Circuits and Systems2013716370https://doi.org/10.1109/TBCAS.2012.21991110.1109/TBCAS.2012.2199114Search in Google Scholar

Bertemes-Filho P, Felipe A, Vincence VC. High accurate Howland current source: Output constraints analysis. Circuits and Systems, 2013, 4.07: 451.Bertemes-FilhoPFelipeAVincenceVCHigh accurate Howland current source: Output constraints analysisCircuits and Systems201340745110.4236/cs.2013.47059Search in Google Scholar

Constantin AV, Gheorghe GI. Simulations of basics topologies and method for practical determination of the output impedance for Howland current sources used for chemical microsensors and biomedical application. In: International Semiconductor Conference (CAS), 2016. IEEE, 2016. p. 183-186. https://doi.org/10.1109/SMICND.2016.778308ConstantinAVGheorgheGISimulations of basics topologies and method for practical determination of the output impedance for Howland current sources used for chemical microsensors and biomedical applicationInternational Semiconductor Conference (CAS)2016IEEE2016. p183186https://doi.org/10.1109/SMICND.2016.77830810.1109/SMICND.2016.7783080Search in Google Scholar

Morcelles KF, Sirtoli VG, Bertemes-Filho P, Vincence VC. Howland current source for high impedance load applications. Review of Scientific Instruments, 2017, 88.11: 114705. https://doi.org/10.1063/1.500533MorcellesKFSirtoliVGBertemes-FilhoPVincenceVCHowland current source for high impedance load applicationsReview of Scientific Instruments20178811114705https://doi.org/10.1063/1.50053310.1063/1.500533029195397Search in Google Scholar

Bertemes-Filho P, Lima RG, Tanaka H. A Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT). In: Proceedings of the 17th International Congress on Mechanical Engineering. São Paulo. 2003. p. 83-7.Bertemes-FilhoPLimaRGTanakaHA Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT)Proceedings of the 17th International Congress on Mechanical EngineeringSão Paulo2003837Search in Google Scholar

Qureshi TR, Chatwin CR, Huber N, Zarafshani A, Tunstall B, Wang W. Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bioimpedance measurements. In: Journal of Physics: Conference Series. IOP Publishing, 2010. p. 012167. https://doi.org/10.1088/1742-6596/224/1/01216QureshiTRChatwinCRHuberNZarafshaniATunstallBWangWComparison of Howland and General Impedance Converter (GIC) circuit based current sources for bioimpedance measurementsJournal of Physics: Conference SeriesIOP Publishing2010012167https://doi.org/10.1088/1742-6596/224/1/0121610.1088/1742-6596/224/1/012167Search in Google Scholar

Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T. Offset-free bidirectional current source for impedance measurement. In: Journal of Physics: Conference Series. IOP Publishing, 2010. p. 012009. https://doi.org/10.1088/1742-6596/224/1/01200PliquettUSchönfeldtMBarthelAFrenseDNackeTOffset-free bidirectional current source for impedance measurementJournal of Physics: Conference SeriesIOP Publishing2010012009https://doi.org/10.1088/1742-6596/224/1/0120010.1088/1742-6596/224/1/012009Search in Google Scholar

Liu J, Qiao X, Wang M, Zhang W, Li G, Lin L. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system. Review of Scientific Instruments, 2014, 85.5: 055111.LiuJQiaoXWangMZhangWLiGLinLThe differential Howland current source with high signal to noise ratio for bioimpedance measurement systemReview of Scientific Instruments201485505511110.1063/1.487825524880419Search in Google Scholar

Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T & Beckmann D. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. Physiological measurement, 32(7), 927. https://doi.org/10.1088/0967-3334/32/7/S1PliquettUSchönfeldtMBarthelAFrenseDNackeTBeckmannD.Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopyPhysiological measurement327927https://doi.org/10.1088/0967-3334/32/7/S110.1088/0967-3334/32/7/S1521646715Search in Google Scholar

Zhang F, Teng Z, Zhong H, Yang Y, Li J & Sang J (2018). Wideband mirrored current source design based on differential difference amplifier for electrical bioimpedance spectroscopy. Biomedical Physics & Engineering Express, 4(2), 025032. https://doi.org/10.1088/2057-1976/aaa9cZhangFTengZZhongHYangYLiJSangJ2018Wideband mirrored current source design based on differential difference amplifier for electrical bioimpedance spectroscopyBiomedical Physics & Engineering Express42025032https://doi.org/10.1088/2057-1976/aaa9c10.1088/2057-1976/aaa9cdSearch in Google Scholar

Lamlih A, Freitas P, David-Grignot S (2018, May). Wideband Fully Differential Current Driver with Optimized Output Impedance for Bioimpedance Measurements. In Circuits and Systems (ISCAS), 2018 IEEE International Symposium on (pp. 1-5). IEEE. https://doi.org/10.1109/ISCAS.2018.835146LamlihAFreitasPDavid-GrignotS2018Wideband Fully Differential Current Driver with Optimized Output Impedance for Bioimpedance MeasurementsIn Circuits and Systems (ISCAS)2018IEEE International Symposium on (pp15IEEEhttps://doi.org/10.1109/ISCAS.2018.83514610.1109/ISCAS.2018.8351464Search in Google Scholar

Li X, Dong F & Fu Y. (2012, May). Analysis of constant-current characteristics for current sources. In Control and Decision Conference (CCDC), 2012 24th Chinese (pp. 2607-2612). IEEE. https://doi.org/10.1109/CCDC.2012.624441LiXDongFFuY2012Analysis of constant-current characteristics for current sourcesIn Control and Decision Conference (CCDC), 2012 24th Chinese26072612IEEEhttps://doi.org/10.1109/CCDC.2012.62444110.1109/CCDC.2012.6244414Search in Google Scholar

Rafiei-Naeini M & McCann H (2008). Low-noise current excitation sub-system for medical EIT. Physiological measurement, 29(6), S173. https://doi.org/10.1088/0967-3334/29/6/S1Rafiei-NaeiniMMcCannH2008Low-noise current excitation sub-system for medical EITPhysiological measurement296S173https://doi.org/10.1088/0967-3334/29/6/S110.1088/0967-3334/29/6/S1518544814Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie