Uneingeschränkter Zugang

Remote Sensing Building Damage Assessment Based on Machine Learning

, ,  und   
30. Sept. 2024

Zitieren
COVER HERUNTERLADEN

Shen G, Hwang N S, Spatial-Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900-2015 [J] Geomatics, Natural Hazards Risk, 2019, 10(1):912-934. Shen G Hwang N S. Spatial-Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900-2015 [J] . Geomatics, Natural Hazards Risk , 2019 , 10 ( 1 ): 912 - 934 . Search in Google Scholar

Li S, Song W, Fang L, et al. Deep Learning for Hyperspectral Image Classification: An Overview [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709. Li S Song W Fang L Deep Learning for Hyperspectral Image Classification: An Overview [J] . IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 9 ): 6690 - 6709 . Search in Google Scholar

Mahdi H, Reza S, Teymoor S S, et al. Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery [J]. Remote Sensing, 2021, 13(6):1195-1195. Mahdi H Reza S Teymoor S S Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery [J] . Remote Sensing , 2021 , 13 ( 6 ): 1195 - 1195 . Search in Google Scholar

Shi D, Ping W, Khushnood A. A survey on deep learning and its applications[J].Computer Science Review, 2021, 40. Shi D Ping W Khushnood A. A survey on deep learning and its applications[J] . Computer Science Review , 2021 , 40 . Search in Google Scholar

Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning [J]. Electronic Markets, 2021, 31(3):1-11. Janiesch C Zschech P Heinrich K. Machine learning and deep learning [J] . Electronic Markets , 2021 , 31 ( 3 ): 1 - 11 . Search in Google Scholar

Khan I A, Al-Habsi S. Machine Learning in Computer Vision [J] Procedia Computer Science, 2020, 167(C):1444-1451. Khan I A Al-Habsi S. Machine Learning in Computer Vision [J] . Procedia Computer Science , 2020 , 167 ( C ): 1444 - 1451 . Search in Google Scholar

Mahony O N, Campbell S, Carvalho A, et al. Deep Learning vs Traditional Computer Vision. [J]. CoRR, 2019,abs/1910.13796. Mahony O N Campbell S Carvalho A Deep Learning vs Traditional Computer Vision . [J]. CoRR , 2019 ,abs/1910.13796. Search in Google Scholar

Wang P, Fan E, Wang P. Comparative Analysis of Image Classification Algorithms Based on Traditional Machine Learning and Deep Learning [J]. Pattern Recognition Letters, 2020. Wang P Fan E Wang P. Comparative Analysis of Image Classification Algorithms Based on Traditional Machine Learning and Deep Learning [J] . Pattern Recognition Letters , 2020 . Search in Google Scholar

Deng J, Jun D, Xiaojing X, et al. A review of research on object detection based on deep learning [J] Journal of Physics: Conference Series, 2020, 1684(1):012028-. Deng J Jun D Xiaojing X A review of research on object detection based on deep learning [J] . Journal of Physics: Conference Series , 2020 , 1684 ( 1 ): 012028 -. Search in Google Scholar

Shervin M, Y Y B, Fatih P, et al. Image Segmentation Using Deep Learning: A Survey [J] IEEE transactions on pattern analysis and machine intelligence, 2021, PP. Shervin M Y Y B Fatih P Image Segmentation Using Deep Learning: A Survey [J] IEEE transactions on pattern analysis and machine intelligence , 2021 , PP. Search in Google Scholar

Ghosh S, Das N, Das I, et al. Understanding Deep Learning Techniques for Image Segmentation [J]. ACM Computing Surveys (CSUR), 2019, 52(4):1-35. Ghosh S Das N Das I Understanding Deep Learning Techniques for Image Segmentation [J] . ACM Computing Surveys (CSUR) , 2019 , 52 ( 4 ): 1 - 35 . Search in Google Scholar

Wenchao G, Shuang B, Lingxing K. A review on 2D instance segmentation based on deep neural networks [J] Image and Vision Computing, 2022, (prepublish) :104401-. Wenchao G Shuang B Lingxing K. A review on 2D instance segmentation based on deep neural networks [J] . Image and Vision Computing , 2022 , (prepublish) : 104401 -. Search in Google Scholar

S. S M, Biswajeet P.Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review [J]. Geocarto International, 2022, 37(21):6186-6212. S. S M Biswajeet P. Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images-A systematic review [J] . Geocarto International , 2022 , 37 ( 21 ): 6186 - 6212 . Search in Google Scholar

Duarte D, Nex F, Kerle N, et al. Satellite Image Classification of Building Damages Using Airbrone and Satellite Image Samples in a Deep Learning Approach [J] ISPRS Annals of Photogrammetry Remote Sensing & Spatial Information Sciences, 2018, 4(2). Duarte D Nex F Kerle N Satellite Image Classification of Building Damages Using Airbrone and Satellite Image Samples in a Deep Learning Approach [J] . ISPRS Annals of Photogrammetry Remote Sensing & Spatial Information Sciences , 2018 , 4 ( 2 ). Search in Google Scholar

Xu J Z, Lu W, Li Z, et al. Building damage detection in satellite imagery using convolutional neural networks [J]. arXiv preprint arXiv:1910.06444, 2019. Xu J Z Lu W Li Z Building damage detection in satellite imagery using convolutional neural networks [J] . arXiv preprint arXiv:1910.06444, 2019 . Search in Google Scholar

Gupta R, Goodman B, Patel N, et al. Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery[C] Proceedings of the IEEE conference on computer vision and pattern recognition, 2019, 10-17. Gupta R Goodman B Patel N Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery[C] . Proceedings of the IEEE conference on computer vision and pattern recognition , 2019 , 10 - 17 . Search in Google Scholar

Weber E, Kané H. Building Disaster Damage Assessment in Satellite Imagery with Multi-temporal Fusion [J]. arXiv preprint arXiv:2004.05525, 2020. Weber E Kané H. Building Disaster Damage Assessment in Satellite Imagery with Multi-temporal Fusion [J] . arXiv preprint arXiv:2004.05525, 2020 . Search in Google Scholar

Gupta R, Hosfelt R, Sajeev S, et al. xBD: A Dataset for Assessing Building Damage from Satellite Imagery [J]. arXiv preprint arXiv:1911.09296, 2019. Gupta R Hosfelt R Sajeev S xBD: A Dataset for Assessing Building Damage from Satellite Imagery [J] . arXiv preprint arXiv:1911.09296 , 2019 . Search in Google Scholar

Schuegraf P, Bittner K. Automatic Building Footprint Extraction from Multi-Resolution Remote Sensing Images Using a Hybrid FCN [J]. ISPRS International Journal of Geo-Information, 2019, 8(4):191. Schuegraf P Bittner K. a Automatic Building Footprint Extraction from Multi-Resolution Remote Sensing Images Using a Hybrid FCN [J] . ISPRS International Journal of Geo-Information , 2019 , 8 ( 4 ): 191 . Search in Google Scholar

Teja K, Jens L, Felix S, et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing [J] ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 17324-49. Teja K Jens L Felix S Review on Convolutional Neural Networks (CNN) in vegetation remote sensing [J] . ISPRS Journal of Photogrammetry and Remote Sensing , 2021 , 17324 - 49 . Search in Google Scholar

Jia S, Shaohua G, Yunqiang Z, et al. A survey of remote sensing image classification based on CNNs [J]. Big Earth Data, 2019, 3(3):232-254. Jia S Shaohua G Yunqiang Z A survey of remote sensing image classification based on CNNs [J] . Big Earth Data , 2019 , 3 ( 3 ): 232 - 254 . Search in Google Scholar

Y. C, X. D, M. L, et al.Dynamic convolution: Attention over convolution kernels [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, 11027-11036. Y. C X. D M. L Dvnamic convolution: Attention over convolution kernels [J] . Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 2020 , 11027 - 11036 . Search in Google Scholar

Andrea A, Francesco D, Francesco I, et al. A survey on modern trainable activation functions [J]. Neural Networks, 2021, 138(prepublish):14-32. Andrea A Francesco D Francesco I A survey on modern trainable activation functions [J] . Neural Networks , 2021 , 138 ( prepublish ): 14 - 32 . Search in Google Scholar

Afia Z, Muhammad A, Nazri N M, et al. A Comparison of Pooling Methods for Convolutional Neural Networks [J]. Applied Sciences, 2022, 12(17):8643-8643. Afia Z Muhammad A Nazri N M A Comparison of Pooling Methods for Convolutional Neural Networks [J] . Applied Sciences , 2022 , 12 ( 17 ): 8643 - 8643 . Search in Google Scholar

D. C. Siamese Neural Networks: An Overview [J]. Methods in Molecular Biology, 2021, 219073-94. D C Siamese Neural Networks: An Overview [J] . Methods in Molecular Biology , 2021 , 219073 - 94 . Search in Google Scholar

Liu X, 0003 Z Y, Zhao J, et al. Siamese Convolutional Neural Networks for Remote Sensing Scene Classification [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1200-1204. Liu X 0003 Z Y Zhao J Siamese Convolutional Neural Networks for Remote Sensing Scene Classification [J] . IEEE Geoscience and Remote Sensing Letters , 2019 , 16 ( 8 ): 1200 - 1204 . Search in Google Scholar

Chen C, Gong W, Chen Y, et al. Object Detection in Remote Sensing Images Based on a Scene-Contextual Feature Pyramid Network [J]. Remote Sensing, 2019, 11(3):339. Chen C Gong W Chen Y Object Detection in Remote Sensing Images Based on a Scene-Contextual Feature Pyramid Network [J] . Remote Sensing , 2019 , 11 ( 3 ): 339 . Search in Google Scholar

Koonce B, Koonce B. ResNet 50 [J]. Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization, 2021: 63-72. Koonce B Koonce B. ResNet 50 [J] . Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization , 2021 : 63 - 72 . Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informatik, andere