Uneingeschränkter Zugang

Remote Sensing Building Damage Assessment Based on Machine Learning

, ,  und   
30. Sept. 2024

Zitieren
COVER HERUNTERLADEN

Confusion matrix formal table

Prediction category True category Positive sample Negative sample
Positive sample TP FP
Negative sample FN TN

Based on the building damage level table defined in this article

Class Description
0 Undamaged
1 Minor damage
2 Major damage
3 Destroyed

Training results on validation dataset

Name Explanation Color
F1 The overall F1 value of the building damage assessment on the xBD validation set Yellow
F1_Loc F1 values for segmentation of building localization on the xBD validation set Purple
F1_Dam F1 value for building damage classification on the xBD validation set Green
F1_Undam F1 value for classification of undamaged buildings on the xBD validation set Grey
F1_Min F1 value for classification of minor damage buildings on the xBD validation set Blue
F1_Maj F1 value for classification of major damage buildings on the xBD validation set Orange
F1_Des F1 value for classification of destroyed buildings on the xBD validation set Red

European disaster committee table for building damage assessment

Masonry Construction Fortified Buildings Damage Level
Undamaged
Minor Damaged
Medium Damaged
Major Damage
Destroyed

Training environment configuration table

Configuration information Detail
Hardware Configuration Nivdia RTX 3080 12G
Language Python 3.8
Main Frame Pytorch 2.1.0 Cuda11.8
Image information 1024×1024 20248 photos
Optimization Function Adam
Loss Function cross entropy loss
Epoch 30
Training time 12h
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informatik, andere