Uneingeschränkter Zugang

Plasticity in response to soil texture affects the relationships between a shoot and root trait and responses vary by population


Zitieren

Abbasi, U.A., You, W.H., Yan, E.R, 2021. Correlations between leaf economics, hydraulic, and shade-tolerance traits among co-occurring individual trees. Acta Oecologica, 110: 103673. https://doi.org/10.1016/j.actao.2020.10367310.1016/j.actao.2020.103673 Search in Google Scholar

Adu, M.O., 2020. Causal shoot and root system traits to variability and plasticity in juvenile cassava (Manihot esculenta Crantz) plants in response to reduced soil moisture. Physiology and Molecular Biology of Plants, 26: 1799–1814. https://doi.org/10.1007/s12298-020-00865-410.1007/s12298-020-00865-4 Search in Google Scholar

Atwater, D.Z., James, J.J., Leger, E.A., 2015. Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic and Applied Ecology, 16: 128–140. https://doi.org/10.1016/j.baae.2014.12.00410.1016/j.baae.2014.12.004 Search in Google Scholar

Boutraa, T., Akhkha, A., Al-Shoaibi, A.A., Alhejeli, A.M., 2010. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for Science, 3: 39–48. https://doi.org/10.1016/S1658-3655(12)60019-310.1016/S1658-3655(12)60019-3 Search in Google Scholar

Casper, B.B., Jackson, R.B., 1997. Plant competition underground. Annual Review of Ecology and Systematics, 28: 545–570. https://doi.org/10.1146/annurevecolsys.28.1.545 Search in Google Scholar

Chambers, J.C., Roundy, B.A., Blank, R.R., Meyer, S.E., Whittaker, A., 2007. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs, 77: 117–145.10.1890/05-1991 Search in Google Scholar

Chapman, N., Miller, A.J., Lindsey, K., Whalley, W.R., 2012. Roots, water, and nutrient acquisition: let’s get physical. Trends in Plant Science, 17: 701–710. https://doi.org/10.1016/j.tplants.2012.08.00110.1016/j.tplants.2012.08.00122947614 Search in Google Scholar

Craine, J. M., Dybzinski, R., 2013. Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27: 833–840. https://doi.org/10.1111/1365-2435.1208110.1111/1365-2435.12081 Search in Google Scholar

Crawley, M.J., 2005 Statistics: an introduction using R. Chicester: John Wiley & Sons Ltd. 376 p. Search in Google Scholar

Foxx, A.J., Fort, F., 2019. Root and shoot competition lead to contrasting competitive outcomes under water stress: a systematic review and meta-analysis. PLoS ONE, 14: 1–17. https://doi.org/10.1371/journal.pone.022067410.1371/journal.pone.0220674690555331825953 Search in Google Scholar

Foxx, A.J., Kramer, A.T., 2020a. Variation in number of root tips influences survival in competition with an invasive grass. Journal of Arid Environments, 179: 104189. https://doi.org/10.1016/j.jaridenv.2020.10418910.1016/j.jaridenv.2020.104189 Search in Google Scholar

Foxx, A.J., Kramer, A.T., 2020b. Hidden variation: cultivars and wild plants differ in trait variation with surprising root trait outcomes. Restoration Ecology: 1–8. https://doi.org/10.1111/rec.1333610.1111/rec.13336 Search in Google Scholar

Foxx, A., Wojcik, S., 2020. Bromus tectorum population root and shoot trait responses to differing substrate types. Arch: Northwestern University Institutional Repository. https://doi.org/10.21985/n2-kt71-ye45. Search in Google Scholar

Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P., Aerts, R., 2010. Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98: 362–373. https://doi.org/10.1111/j.1365-2745.2009.01615.x10.1111/j.1365-2745.2009.01615.x Search in Google Scholar

Hajek, P., Hertel, D., Leuschner, C., 2013. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Frontiers in Plant Science, 4: 415. https://doi.org/10.3389/fpls.2013.0041510.3389/fpls.2013.00415380108624155751 Search in Google Scholar

Jupp, A., Newman, I., 1987. Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytologist, 105: 393–402. https://doi.org/10.1111/j.1469-8137.1987.tb00876.x10.1111/j.1469-8137.1987.tb00876.x33873904 Search in Google Scholar

Kembel, S.W., Cahill, J., 2011. Independent evolution of leaf and root traits within and among temperate grassland plant communities. PLoS ONE, 6: 2–10. https://doi.org/10.1371/journal.pone.001999210.1371/journal.pone.0019992311058021687704 Search in Google Scholar

Lazof, D.B., Rufty, T.W., Redinbaugh, M.G., 1992. Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiology, 100: 1251–1258.10.1104/pp.100.3.1251107577416653113 Search in Google Scholar

Leger, E.A., Baughman, O.W., 2015. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Natural Areas Journal, 35: 54–68. https://doi.org/10.3375/043.035.010810.3375/043.035.0108 Search in Google Scholar

Liu, J.G., Mahoney, K.J., Sikkema, P.H., Swanton, C.J., 2009. The importance of light quality in crop-weed competition. Weed Research, 49: 217–224. https://doi.org/10.1111/j.1365-3180.2008.00687.x10.1111/j.1365-3180.2008.00687.x Search in Google Scholar

Martre, P., North, G.B., Bobich, E.G., Nobel, P.S., 2002. Root deployment and shoot growh for two desert species in response to soil rockiness. American Journal of Botany, 89: 1933–1939. https://doi.org/10.3732/ajb.89.12.193310.3732/ajb.89.12.193321665622 Search in Google Scholar

McGrail, R.K., Van Sanford, D.A., McNear, D.H., 2020. Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy, 10: 1–19. https://doi.org/10.3390/agronomy1009132810.3390/agronomy10091328 Search in Google Scholar

Nye, P.H., Tinker, P.B., 1977. Solute movement in the rhizosphere. Oxford: Blackwell. 342 p. Search in Google Scholar

Oláh, B., Brière, C., Bécard, G., Dénarié, J., Gough, C., 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal, 44: 195–207. https://doi.org/10.1111/j.1365-313X.2005.02522.x10.1111/j.1365-313X.2005.02522.x16212600 Search in Google Scholar

Placido, D.F., Sandhu, J., Sato, S.J., Nersesian, N., Quach, T., Clemente, T.E., Staswick, P.E., Walia, H., 2020. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18: 1955–1968. https://doi.org/10.1111/pbi.1335510.1111/pbi.13355741578432031318 Search in Google Scholar

R Core Team, 2021. R: a language and environment for statistical computing. Vienna, Austria: R Statistical Computing. [cit. 2021-05-19]. https://www.R-project.org/ Search in Google Scholar

Rowe, C.L.J., Leger, E., 2011. Competitive seedlings and inherited traits: a test of rapid evolution of Elymus multisetus (big squirreltail) in response to cheatgrass invasion. Evolutionary Applications, 4: 485–498. https://doi.org/10.1111/j.1752-4571.2010.00162.x10.1111/j.1752-4571.2010.00162.x335252925567997 Search in Google Scholar

Sasse, J., Kosina, S.M., de Raad, M., Jordan, J.S., Whiting, K., Zhalnina, K., Northen, T.R., 2020. Root morphology and exudate availability are shaped by particle size and chemistry in Brachypodium distachyon. Plant Direct, 4: 1–14. https://doi.org/10.1002/pld3.20710.1002/pld3.207733062432642632 Search in Google Scholar

Sharma, R.B., Ghidyal, B.P., 1977. Soil water-root relations in wheat: water extraction rate of wheat roots that developed under dry and moist conditions. Agronomy Journal, 69: 231–233. https://doi.org/10.2134/agronj1977.00021962006900020009x10.2134/agronj1977.00021962006900020009x Search in Google Scholar

Sharp, R.E., Davies, W.J., 1979. Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147: 43–49. https://doi.org/10.1007/BF0038458910.1007/BF0038458924310893 Search in Google Scholar

Shen, Y., Gilbert, G.S., Li, W., Fang, M., Lu, H., Yu, S., 2019. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Frontiers in Plant Science, 10: 1–12. https://doi.org/10.3389/fpls.2019.0141210.3389/fpls.2019.01412683172331737024 Search in Google Scholar

Silva, D.D., Kane, M.E., Beeson, R.C., 2012. Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb. Horticultural Science, 47: 1634–1640. https://doi.org/10.21273/HORTSCI.47.11.163410.21273/HORTSCI.47.11.1634 Search in Google Scholar

Sorgonà, A., Abenavoli, M.R., Gringeri, P.G., Cacco, G., 2007. Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels. Annals of Botany, 100: 1287–1296. https://doi.org/10.1093/aob/mcm20710.1093/aob/mcm207275924917881338 Search in Google Scholar

Stevanato, P., Trebbi, D., Bertaggia, M., Colombo, M., Broccanello, C., Concheri, G., Saccomani, M., 2011. Root traits and competitiveness against weeds in sugar beet. International Sugar Journal, 113: 24–28. Search in Google Scholar

Varney, G., Canny, M., 1993. Rates of water uptake into the mature root systems of maize plants. New Phytologist, 123: 775–786. https://doi.org/10.1111/j.1469-8137.1993.tb03789.x10.1111/j.1469-8137.1993.tb03789.x Search in Google Scholar

Wang, X., Taub, D.R., 2010. Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia, 163: 1–11. https://doi.org/10.1007/s00442-010-1572-x10.1007/s00442-010-1572-x20155287 Search in Google Scholar

Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227. https://doi.org/10.1023/A:100432722472910.1023/A:1004327224729 Search in Google Scholar

Young, J., Clements, C., 2007. Cheatgrass rangelands by grazing. Rangelands, 29: 15–20. https://doi.org/10.2111/1551-501X(2007)29[15:CAGR]2.0.CO;2 Search in Google Scholar

eISSN:
1338-7014
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Botanik, Zoologie, Ökologie