[
Abdourhamane, H., Morou, B., Rabiou, H. & Amhamane A. (2013). Caractéristiques floristiques, diversité et structure de la végétation ligneuse dans le Centre-Sud du Niger: cas du complexe des forêts classées de Dan kada Dodo-Dan Gado. International Journal of Biological and Chemical Sciences, 7(3), 1048‒1068. DOI: 10.4314/ijbcs.v7i3.13.
]Search in Google Scholar
[
Acker, S.A., Sabin, T.E., Ganio, L.M. & McKee W.A. (1998). Development of old-growth structure and timber volume growth trends in maturing Douglas-fir stands. For. Ecol. Manag., 104(1‒3), 265‒280. DOI: 10.1016/S0378-1127(97)00249-1.
]Search in Google Scholar
[
Afi, A.A., El Kadmiri, A.A., Benabid, A. & Rochdi M. (2005). Richesse et diversité floristique de la suberaie de la Mamora (Maroc). Acta Bot. Malacit., 30, 127‒138. DOI: 10.24310/abm.v30i0.7187.
]Search in Google Scholar
[
Ajbilou, R., Marañón, T., Arroyo, J. & Ater M. (2008). Structure et diversité des subéraies du Nord-Ouest du Maroc. Annales de la Recherche Forestière au Maroc, 39, 36‒42.
]Search in Google Scholar
[
Benabdellah, M.A. & Amrani R. (2014). Étude des caractéristiques dendrométriques et productivité du chêne-liège de la forêt de Hafir (région de Tlemcen, Algérie occidentale). Ecol. Mediterr., 40(2), 65‒75.
]Search in Google Scholar
[
Bouazza, D. (2022). La régénération du genre Quercus après incendie dans les monts de Tiaret. Doctoral dissertation, Université Ibn Khaldoun, Tiaret, Algérie.
]Search in Google Scholar
[
Cailliez, F. (1980). Estimation des volumes et accroissement des peuplements forestiers (avec référence particulière aux forêts tropicales). Estimation des volumes.
]Search in Google Scholar
[
Canham, C.D., Denslow, J.S., Platt, W.J., Runkle, J.R., Spies, T.A. & White P.S. (1990). Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res., 20(5), 620‒631. DOI: 10.1139/x90-084.
]Search in Google Scholar
[
Canham, C.D., Finzi, A.C., Pacala, S.W. & Burbank D.H. (1994). Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can. J. For. Res., 24(2), 337‒349. DOI: 10.1139/x94-046.
]Search in Google Scholar
[
Canham, C.D., Papaik, M.J., Uriarte, M., McWilliams, W.H., Jenkins, J.C. & Twery M.J. (2006). Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol. Appl., 16(2), 540‒554. DOI: 10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2.
]Search in Google Scholar
[
Cannell, M.G.R., Milne, R., Sheppard, L.J. & Unsworth M.H. (1987). Radiation interception and productivity of willow. J. Appl. Ecol., 1, 261–278. DOI: 10.2307/2403803.
]Search in Google Scholar
[
Catry, F.X., Moreira, F., Duarte, I. & Acácio V. (2009). Factors affecting post-fire crown regeneration in cork oak (Quercus suber L.) trees. European Journal of Forest Research, 128 (3), 231‒240. DOI: 10.1007/s10342-009-0259-5.
]Search in Google Scholar
[
Chouahada, S. (2016). Résilience des écosystèmes forestières du Nord-est algérien après incendie : cas des subéraies. Thèse Doctorat en Écologie Animale, Université de Badji Mokhtar, Annaba, Algérie.
]Search in Google Scholar
[
Cuesta, J., Chazette, P., Allouis, T., Sanak, J., Genau, P., Flamant, P.H., Durrieu, S. & Flamant C. (2010). La canopée forestière vue par un lidar ultra-violet aéroporté de nouvelle génération. Revue Française de Photogrammétrie et de Télédétection, 191, 19‒27.
]Search in Google Scholar
[
Cunningham, A.B. (2001). Applied Ethnobotany. People Wild Plant Use and Conservation. People and Plants Conservation. London: Earth scan Publications Ltd.
]Search in Google Scholar
[
Deleuze, C., Hervé, J.C., Colin, F. & Ribeyrolles L. (1996). Modelling crown shape of Picea abies: spacing effects. Can. J. For. Res., 26(11), 1957‒1966. DOI: 10.1139/x26-221.
]Search in Google Scholar
[
Espírito-Santo, F.D., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., Oliviera Jr, R.C., Pereira, C., Lloyd, J., Frolking, S., Palace, M., Shimabukuro, Y.E., Duarte, V., Mendoza, A.M., López-González, G., Baker, T.R., Feldpausch, T.R., Brienen, R.J.W., Asner, G.P., Boyd, D.S. & Phillips O.L. (2014). Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 5(1), 1‒6. DOI: 10.1038/ncomms4434.
]Search in Google Scholar
[
Feeley, K.J., Davies, S.J., Noor, M.N.S., Kassim, A.R. & Tan S. (2007). Do current stem size distributions predict future population changes? An empirical test of intraspecific patterns in tropical trees at two spatial scales. J. Trop. Ecol., 23(2), 191‒198. DOI: 10.1017/S0266467406003919.
]Search in Google Scholar
[
Frazer, G.W., Trofymow, J.A. & Lertzman K.P. (2000). Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Can. J. For. Res., 30(2), 239‒256. DOI: 10.1139/x99-201.
]Search in Google Scholar
[
Houllier, F., Bouchon, J. & Birot Y. (1991). Modélisation de la dynamique des peuplements forestiers : état et perspectives. Rev. For. Fr., 43(2), 87‒108.
]Search in Google Scholar
[
Hounkpèvi, A., Yévidé, A.S.I., Ganglo, J.C., Devineau, J.L., Azontonde, A.H., Adjakidjè, V., Agbossou, E.K. & De Foucault B. (2011). Structure et écologie de la forêt à Diospyros mespiliformis Hochst. ex A. DC. et à Dialium guineense Willd. de la réserve de Massi (La Lama), Bénin. Bois For. Trop., 308, 33‒46. DOI: 10.19182/bft2011.308.a20472.
]Search in Google Scholar
[
Lenz, P., Bernier-Cardou, M., MacKay, J. & Beaulieu J. (2012). Can wood properties be predicted from the morphological traits of a tree? A canonical correlation study of plantation-grown white spruce. Can. J. For. Res., 42(8), 1518‒1529. DOI: 10.1139/x2012-087.
]Search in Google Scholar
[
Letreuch-Belarouci, A., Medjahdi, B.I. & Souidi Z. (2013). The typology of forest stands a sustainable and multifunctional management tool (Northwest-West Algeria). Annales de l’INRGREF, 18, 77‒92.
]Search in Google Scholar
[
McCarthy, J.W. & Weetman G. (2006). Age and size structure of gap-dynamic, old-growth boreal forest stands in Newfoundland. Silva Fenn., 40(2), 209.
]Search in Google Scholar
[
Messaoudene, M. (1989). Dendroécologie et productivité de Quercus afares POMEL et Quercus canariensis WILLD. Dans les massifs forestiers de l’Akfadou et de Beni Ghobri en Algérie. Thèse Doctorat Sciences, Université de Aix – Marseille III, France.
]Search in Google Scholar
[
Moreira, F., Catry, F., Duarte, I., Acácio, V. & Silva J.S. (2009). A concep-A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L.) trees in Southern Portugal. Forest Ecology: Recent Advances in Plant Ecology, 201(1), 77‒85. DOI: 10.1006/jare.2002.1079.
]Search in Google Scholar
[
Oliveira, G. & Costa A. (2012). How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. For. Ecol. Manag., 270, 257‒272. DOI: 10.1016/j.foreco.2012.01.025.
]Search in Google Scholar
[
Oswald, H. (1980). Une expérience d’espacement de plantation de Sapin de Vancouver (Abies grandis). Rev. For. Fr., 32(1), 60‒78.
]Search in Google Scholar
[
Parde, J. & Bouchon J. (1988). Dendrométrie. Nancy: École Nationale du Génie rural, des Eaux et Forêts.
]Search in Google Scholar
[
Peters, V.S., Macdonald, S.E. & Dale M.R. (2006). Patterns of initial versus delayed regeneration of white spruce in boreal mixedwood succession. Can. J. For. Res., 36(6), 1597‒1609. DOI: 10.1139/x06-020.
]Search in Google Scholar
[
Piqué, J.V., Martín, R.T., Estrada, J.C.G. & Calvo I.P. (2007). Aproximaciones neuronales para la modelización del crecimiento diario del alcornoque (Quercus suber L.) en una dehesa del suroeste de España (Hinojos, Huelva). Cuadernos de la Sociedad Española de Ciencias Forestales, 23, 251‒257.
]Search in Google Scholar
[
Piqué, J.V., Naranjo, F.P., Martín, R.T., Pérez, M.A.G., Muñoz, E.A. & Martín-Pérez D. (2008). Análisis de la influencia de parámetros edáficos y climáticos en el crecimiento del alcornoque en una dehesa de Huelva (España). Cuadernos de la Sociedad Española de Ciencias Forestales, 25, 431‒437.
]Search in Google Scholar
[
Power, H., LeMay, V., Berninger, F., Sattler, D. & Kneeshaw D. (2012). Differences in crown characteristics between black (Picea mariana) and white spruce (Picea glauca). Can. J. For. Res., 42(9), 1733‒1743. DOI: 10.1139/x2012-106.
]Search in Google Scholar
[
Pretzsch, H. (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag., 327, 251‒264. DOI: 10.1016/j.foreco.2014.04.027.
]Search in Google Scholar
[
Rabhi, K. & Messaoudene M. (2013). Ajustement de modèle hyperbolique hauteur circonférence pour le chêne zeen (Quercus canariensis Willd) de l’Akfadou Algéri. Annale de la Recherche Forestière en Algérie, 1, 83‒92.
]Search in Google Scholar
[
Rabiou, H., Diouf, A., Bationo, B.A., Mahamane, A., Segla, K.N., Radji, R., Kokutse, A.D., Kokou, K. & Saadou M. (2015). Structure démographique de peuplement naturel et répartition spatiale des plantules de Pterocarpus erinaceus Poir. dans la forê. International Journal of Biological and Chemical Sciences, 9(1), 69‒81. DOI: 10.4314/ijbcs.v9i1.7
]Search in Google Scholar
[
Röhle, H. & Huber W. (1985). Untersuchungen zur Methode der Ablotung von Kronenradien und der Berechnung von Kronengrundflächen. Forstarchiv, 56(6), 238‒243.
]Search in Google Scholar
[
Rondeux, J. (1999). La mesure des arbres et des peuplements forestiers. Belgique: Les Presses Agronomiques de Gembloux.
]Search in Google Scholar
[
Saccardy, L. (1937). Notes sur le chêne liège et le chêne en Algérie. Bulletin de la Station de Recherches Forestières (du nord de l’Afrique), 2(3), 273‒363.
]Search in Google Scholar
[
Sattler, D.F. & Comeau P.G. (2015). Crown allometry and application of the pipe model theory to white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) in the western boreal forest of Canada. Can. J. For. Res., 46(2), 262‒273. DOI: 10.1139/cjfr-2015-0165.
]Search in Google Scholar
[
Sattler, D.F. & LeMay V. (2011). A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND. Can. J. For. Res., 41(8), 1567‒1576. DOI: 10.1139/x11-078.
]Search in Google Scholar
[
Silva, J.S. & Catry F. (2006). Forest fires in cork oak (Quercus suber L.) stands in Portugal. International Journal of Environmental Studies, 63(3), 235‒257.
]Search in Google Scholar
[
Sinoquet, H., Le Roux, X., Adam, B., Ameglio, T. & Daudet F.A. (2001). RATP: a model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: application to an isolated tree crown. Plant, Cell Environ., 24(4), 395‒406. DOI: 10.1080/00207230600720829.
]Search in Google Scholar
[
Spies, T.A. (1998). Forest structure: a key to the ecosystem. Northwest Sci., 72, 34–39.
]Search in Google Scholar
[
Touafchia, B., Beldjazia, A., Redjaimia, L., Missaoui, K., Zerrouki, A. & Rached-Kanouni M. (2022). Viability of Ouled Bechih forest (Algeria). Asia Life Sci., 12(11), 1617‒1624.
]Search in Google Scholar
[
Walker, J. & Hopkins M.S. (1990). Vegetation. In R.C. McDonald, R.F. Isbell, J.G. Speight, J. Walker & M.S. Hopkins (Eds.), Australian soil and land survey handbook: field handbook (pp. 58‒86). Melbourne: Inkata Press.
]Search in Google Scholar
[
Wang, Y.P. & Jarvis P.G. (1990). Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). Tree Physiol., 7(1‒2‒3‒4), 297‒316. DOI: 10.1093/treephys/7.1-2-3-4.297.
]Search in Google Scholar