1. bookVolumen 40 (2021): Heft 2 (June 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1337-947X
Erstveröffentlichung
24 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Application of Degradable Carbon and Nitrogen Moderates Carbon Sequestration Potential of Biochar in Arable Soils

Online veröffentlicht: 17 Jul 2021
Volumen & Heft: Volumen 40 (2021) - Heft 2 (June 2021)
Seitenbereich: 124 - 129
Eingereicht: 29 Apr 2020
Akzeptiert: 21 Aug 2020
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1337-947X
Erstveröffentlichung
24 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Biochar can affect CO2 emission and C sequestration from soils, but little is known about the effects of its re-application and interaction with easily accessible substrates. Since most agricultural soils are continuously reworked, understanding the mechanics of CO2 evolution as affected by soil amendments and their combinations may have important lessons for the global effort to combat climate change. In this study carried out in a controlled environment, we tested the short-term effects of biochar, and its re-application at different rates, on the production of CO2 emission and C accumulation in samples of arable soils. We used a loamy Haplic Luvisol as the substrate and added varying amounts of biochar and sources of easily accessible N and C. We observed CO2 evolution for 20 days at optimal temperature and moisture conditions. We found that in the control treatment with no biochar, the total potential respiration after the addition of (NH4)2SO4 (N) and glucose (G) was increased compared to basal respiration. The addition of biochar reduced CO2 emission in the control, N- and G-stimulated treatments by 12–22, 13‒24 and 2‒21%, respectively. Conversely, the application of biochar increased CO2 emission in the combined NG treatment. Application of biochar at a higher rate, as well as its re-application, increased soil organic carbon content and reduced emission of CO2 into the atmosphere.

Alef, K. & Nannipieri P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press. Search in Google Scholar

Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homm, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. & Horie T. (2009). Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res., 111, 81–84. DOI: 10.1016/j.fcr.2008.10.008.10.1016/j.fcr.2008.10.008 Search in Google Scholar

Biswas, H., Prabhavathi, M., Patil, S.L., Kumar, A. & Morade A.S. (2019). Application of biochar as soil amendment: Theory and practice. In A. Rakshit, B. Sarkar & P.Ch. Abhilash (Eds.), Soil amendments for sustainability, challenges and perspectives (pp. 159–174). Boca Raton, London, New York: CRC Press, Taylor & Francis Group. Search in Google Scholar

Duiker, S.W. & Lal R. (1999). Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res., 52, 73–81. DOI: 10.1016/S0167-1987(99)00059-8.10.1016/S0167-1987(99)00059-8 Search in Google Scholar

Dziadowiec, H. & Gonet S.S. (1999). Methodical guide-book for soil organic matter studies (in Polish). Warszawa: Prace komisji naukowych Polskiego towarystwa gleboznaczego. Search in Google Scholar

Fischer, D. & Glaser B. (2012). Synergisms between compost and biochar for sustainable soil amelioration. Rijeka: Tech Europe. Search in Google Scholar

He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H. & Xu C. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9, 743–755. DOI: 10.1111/gcbb.12376.10.1111/gcbb.12376 Search in Google Scholar

Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M. Balashov, E.V, Buchkina, N.P., Rizhiya, E.Y. & Jankowski M. (2017). Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia, 72(9), 995–1001. DOI: 0.1515/biolog-2017-0109.10.1515/biolog-2017-0109 Search in Google Scholar

Horák, J., Šimanský, V., Igaz, D., Juriga, M., Aydin, E. & Lukac M. (2020). Biochar: An important component ameliorating the productivity of intensively used soils – review. Pol. J. Environ. Stud., 29(5), 1–7. DOI: 10.15244/pjoes/113128.10.15244/pjoes/113128 Search in Google Scholar

Cheng, H., Hill, P.W., Bastami, M.S. & Jones D.Y. (2016). Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy, 9(6), 1110‒1121. DOI: 10.1111/gcbb.12402.10.1111/gcbb.12402 Search in Google Scholar

IPCC (2018): Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor & T. Waterfield (Eds.), Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization. https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf Search in Google Scholar

Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. & Cantrell K.B. (2015). Biochar elemental composition and factors influencing nutrient retention. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 137–161). London, UK, Boca Raton: Routledge, Taylor & Francis Group. Search in Google Scholar

Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P. & Gao B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced Black Carbons (Biochars). Environ. Sci. Technol., 44, 6189–6195. DOI: 10.1021/es1014423.10.1021/es101442320669904 Search in Google Scholar

Körschner, M., Schulz, E. & Behm R. (1990). Heisswasserlőslicher C und N im Boden als Kriterium fűr das N-Nachliferungsvermőgen. Mikrobiologie, 145, 305–311. Search in Google Scholar

Lang, R., Blagodatsky, S., Xu, J. & Cadisch G. (2017). Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest. Agric. Ecosyst. Environ., 240, 314–328. DOI: 10.1016/j.agee.2017.02.032.10.1016/j.agee.2017.02.032 Search in Google Scholar

Li, X., Inubushi, K. & Sakamoto K. (2002). Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizers and manure. Biol. Fertil. Soils, 35, 108–113. DOI: 10.1007/s00374-002-0447-7.10.1007/s00374-002-0447-7 Search in Google Scholar

Lloyd, K., Madramootoo, Ch.A., Edwards, K.P. & Grant A. (2019). Greenhouse gas emissions from selected horticultural production systems in a cold temperate climate. Geoderma, 349, 45–55. DOI: 10.1016/j.geoderma.2019.04.030.10.1016/j.geoderma.2019.04.030 Search in Google Scholar

Loginow, W., Wisniewski, W., Gonet, S.S. & Ciescinska B. (1987). Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20, 47–52. Search in Google Scholar

Novák, J., Jankowski, K., Sosnowski, J., Malinowska, E. & Wiśniewska-Kadżajan B. (2020). Influence of plant species and grasslands quality on sequestration of soil organic carbon. Ekológia (Bratislava), 39(3), 289– 300. DOI: 10.2478/eko-2020-0023.10.2478/eko-2020-0023 Search in Google Scholar

Popelárová, E., Voříšek, K. & Strnadová S. (2002). Mineralization activity in soils for the development of the precision farming system. Arch. Acker Pfl. Boden, 48, 147−153.10.1080/03650340214160 Search in Google Scholar

Rizhiya, E.Y., Horák, J., Šimanský, V. & Buchkina N.P. (2020). Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 75, 873–884. DOI: 10.2478/s11756-019-00335-7.10.2478/s11756-019-00335-7 Search in Google Scholar

Schlesinger, W.H. & Andrews J.A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20. DOI: 10.1023/A:1006247623877.10.1023/A:1006247623877 Search in Google Scholar

Schulz, H. & Glaser B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Soil Sci. Plant Nutr., 175, 410–422. DOI: 10.1002/jpln.201100143.10.1002/jpln.201100143 Search in Google Scholar

Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F. & Tubiello F. (2014). Agriculture, forestry and other land use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Krie-mann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel & J.C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change (pp. 811–922). Cambridge, New York: Cambridge University Press. Search in Google Scholar

Šikanja, S. & Milovanović N. (2020). The impact of climate change on the appearance of some pathogens in oak forests (Quercus frainetto Ten.) and the analysis of thickness increase in the Šumadija Region (Central Serbia). Ekológia (Bratislava), 39(4), 310–321. DOI: 10.2478/eko-2020-0025.10.2478/eko-2020-0025 Search in Google Scholar

Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E.Y. & Lukac M. (2016). How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71(9), 989–995. DOI: 10.1515/biolog-2016-0122.10.1515/biolog-2016-0122 Search in Google Scholar

Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L. & Xing B. (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 138, 576–583. DOI: 10.1016/j.chemosphere.2015.06.084.10.1016/j.chemosphere.2015.06.08426210022 Search in Google Scholar

Whitman, T., Singh, B.P. & Zimmerman A. (2015). Priming effects in biocharamended soils: Implications of biochar-soil organic matter interactions for carbon storage. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 455–487). London, Boca Raton: Routledge, Taylor & Francis Group. Search in Google Scholar

Xu, X., Tian, H. & Hui D. (2008). Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Glob. Chang. Biol., 14, 1651–1660. DOI: 10.1111/j.1365-2486.2008.01595.x.10.1111/j.1365-2486.2008.01595.x Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo