Uneingeschränkter Zugang

Atrial fibrillation ablation: the position of computed tomography in pre-procedural imaging


Zitieren

1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837-47.10.1161/CIRCULATIONAHA.113.005119415130224345399 Search in Google Scholar

2. Malhi N, Hawkins NM, Andrage JG, Krahn AD, Deyell MW. Catheter ablation of atrial fibrillation in heart failure with reduced ejection fraction. J Cardiovasc Electrophysiol. 2018;29:1049-58.10.1111/jce.1349729630760 Search in Google Scholar

3. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373-498.10.1093/eurheartj/ehaa61232860505 Search in Google Scholar

4. Kuck KH, Brugada J, Furnkranz A, Metzner A, Ouyang F, Chun KR, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374:2235-45.10.1056/NEJMoa160201427042964 Search in Google Scholar

5. Su WW, Reddy VY, Bhasin K, Champagne J, Sangrigoli RM, Braegelmann KM, et al. Cryoballoon ablation of pulmonary veins for persistent atrial fibrillation: Results from the multicenter STOP Persistent AF trial. Heart Rhythm. 2020;17(11):1841-7.10.1016/j.hrthm.2020.06.02032590151 Search in Google Scholar

6. Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Poole JE, et al. CABANA Investigators. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;21:1261-74.10.1001/jama.2019.0693645028430874766 Search in Google Scholar

7. Turagam MK, Garg J, Whang W, Sartori S, Koruth JS, Miller MA, et al. Catheter ablation of atrial fibrillation in patients with heart failure: a meta-analysis of randomized controlled trials. Ann Intern Med. 2019;170:41-50.10.7326/M18-099230583296 Search in Google Scholar

8. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, et al. EAST-AFNET 4 Trial Investigators. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305-16.10.1056/NEJMoa201942232865375 Search in Google Scholar

9. Wazni OM, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S, et al. STOP AF First Trial Investigators. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384:316-24.10.1056/NEJMoa202955433197158 Search in Google Scholar

10. Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305-15.10.1056/NEJMoa202998033197159 Search in Google Scholar

11. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation Circulation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133:1637-44.10.1161/CIRCULATIONAHA.115.01940627029350 Search in Google Scholar

12. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol. 2017;70:1949-61.10.1016/j.jacc.2017.08.04128855115 Search in Google Scholar

13. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, et al. CASTLE-AF Investigators. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417-27.10.1056/NEJMoa170785529385358 Search in Google Scholar

14. Kuniss M, Pavlovic N, Velagic V, Hermida JS, Healey S, Arena G, et al. Cryoballoon ablation vs. antiarrhythmic drugs: first-line therapy for patients with paroxysmal atrial fibrillation. Europace. 2021;23(7):1033-41.10.1093/europace/euab029828685133728429 Search in Google Scholar

15. Steinberg C, Champagne J, Deyell MW, Dubuc M, Leong-Sit P, Calkins H, et al. CIRCA-DOSE Study Investigators. Prevalence and outcome of early recurrence of atrial tachyarrhythmias in the cryoballoon vs irrigated radiofrequency catheter ablation (CIRCA-DOSE) study. Heart Rhythm. 2021;18(9):1463-70.10.1016/j.hrthm.2021.06.117234126269 Search in Google Scholar

16. Hayashi T, Murakami M, Saito S, Iwasaki K. Characteristics of anatomical difficulty for cryoballoon ablation: insights from CT. Open Heart. 2022;9(1):e001724.10.1136/openhrt-2021-001724873944534992156 Search in Google Scholar

17. Thai WE, Wai B, Truong QA. Preprocedural imaging for patients with atrial fibrillation and heart failure. Curr Cardiol Rep. 2012; 14:584-92.10.1007/s11886-012-0293-7343362622828754 Search in Google Scholar

18. Angulo Hervias E, Guillén Subirán ME, Yagüe Romeo D, Castán Senar A, Seral Moral P, Núñez Motilva ME. Multidetector computed tomography in planning the treatment of atrial fibrillation. Radiologia (Engl Ed). 2020;62(2):148-59.10.1016/j.rxeng.2019.11.002 Search in Google Scholar

19. Sandhu A, Zipse MM, Borne RT, Aleong RG, Tompkins C, Schuller J, et al. Esophageal position, measured luminal temperatures, and risk of atrioesophageal fistula with atrial fibrillation ablation. Pacing Clin Electrophysiol. 2019;42(4):458-63.10.1111/pace.1363930779183 Search in Google Scholar

20. Kapur S, Barbhaiya C, Deneke T, Michaud GF. Esophageal injury and atrioesophageal fistula caused by ablation for atrial fibrillation. Circulation. 2017;136(13):1247-55.10.1161/CIRCULATIONAHA.117.02582728947480 Search in Google Scholar

21. Lemola K, Sneider M, Desjardins B, Case I, Han J, Good E, at al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;110(24):3655-60.10.1161/01.CIR.0000149714.31471.FD15569839 Search in Google Scholar

22. Tsao HM, Wu MH, Higa S, Lee KT, Tai CT, Hsu NW, at al. Anatomic relationship of the esophagus and left atrium: implication for catheter ablation of atrial fibrillation. Chest. 2005;128(4):2581-7.10.1378/chest.128.4.258116236927 Search in Google Scholar

23. Starek Z, Lehar F, Jez J, Scurek M, Wolf J, Kulik T, Zbankova A. Esophageal positions relative to the left atrium; data from 293 patients before catheter ablation of atrial fibrillation. Indian Heart J. 2018;70(1):37-44.10.1016/j.ihj.2017.06.013590282129455785 Search in Google Scholar

24. Narui R, Tokuda M, Matsushima M, Isogai R, Tokutake K, Yokoyama K, et al. Incidence and factors associated with the occurrence of pulmonary vein narrowing after cryoballoon ablation. Circ Arrhythm Electrophysiol. 2017;10(6):e004588.10.1161/CIRCEP.116.00458828630168 Search in Google Scholar

25. Matsuda J, Miyazaki S, Nakamura H, Taniguchi H, Kajiyama T, Hachiya H, et al. Pulmonary vein stenosis after second-generation cryoballoon ablation. J Cardiovasc Electrophysiol. 2017;28(3):298-303.10.1111/jce.1315528032927 Search in Google Scholar

26. Tokutake K, Tokuda M, Yamashita S, Sato H, Ikewaki H, Okajima E, et al. Anatomical and procedural factors of severe pulmonary vein stenosis after cryoballoon pulmonary vein ablation. JACC Clin Electrophysiol. 2019;5(11):1303-15.10.1016/j.jacep.2019.08.00331753437 Search in Google Scholar

27. Beinart R, Abbara S, Blum A, Ferencik M, Heist K, Ruskin J, et al. Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation. J Cardiovasc Electrophysiol. 2011;22(11):1232-6.10.1111/j.1540-8167.2011.02100.x21615817 Search in Google Scholar

28. Hof I, Chilukuri K, Arbab-Zadeh A, Scherr D, Dalal D, Nazarian S, et al. Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? J Cardiovasc Electrophysiol. 2009;20:1005-10.10.1111/j.1540-8167.2009.01504.x Search in Google Scholar

29. Dorenkamp M, Sohns C, Vollmann D, Lüthje L, Seegers J, Wachter R, et al. Detection of left atrial thrombus during routine diagnostics work-up prior to pulmonary vein isolation for atrial fibrillation: Role of transesophageal echocardiography and multi-detector computed tomography. Int J Cardiol. 2013;163:26-33.10.1016/j.ijcard.2011.06.12421764466 Search in Google Scholar

30. Mosleh W, Sheikh A, Said Z, Ahmed MA, Gadde S, Shah T, et al. The use of cardiac-CT alone to exclude left atrial thrombus before atrial fibrillation ablation: Efficiency, safety and cost analysis. Pacing Clin Electrophysiol. 2018;41(7):727-33.10.1111/pace.13353619287329667208 Search in Google Scholar

31. Hong SJ, Kim JY, Kim JB, Sung JH, Wook Kim D, Uhm JS, et al. Multidetector computed tomography may be an adequate screening test to reduce periprocedural stroke in atrial fibrillation ablation: a multicenter propensity – matched analysis. Heart Rhythm. 2014;11(5): 763-70.10.1016/j.hrthm.2014.01.02624469219 Search in Google Scholar

32. Bilchick KC, Mealor A, Gonzalez J, Norton P, Zhuo D, Mason P, et al. Effectiveness of integrating delayed computed tomography angiography imaging for left atrial appendage thrombus exclusion into the care of patients undergoing ablation of atrial fibrillation. Heart Rhythm. 2016;13(1):12-9.10.1016/j.hrthm.2015.09.002485834926341605 Search in Google Scholar

33. Kottmaier M, Jilek C, Berglar S, Reents T, Bourier F, Semmler V, et al. Exclusion of left atrial thrombus by dual-source cardiac computed tomography prior to catheter ablation for atrial fibrillation. Clin Res Cardiol. 2019;108(2):150-6.10.1007/s00392-018-1333-030051177 Search in Google Scholar

34. Zhai Z, Tang M, Zhang S, Fang P, Jia Y, Feng T, Wang J. Transoesophageal echocardiography prior to catheter ablation could be avoided in atrial fibrillation patients with a low risk of stroke and without filling defects in the late-phase MDCT scan: A retrospective analysis of 783 patients. Eur Radiol. 2018;28(5):1835-40.10.1007/s00330-017-5172-629218612 Search in Google Scholar

35. Pathan F, Hecht H, Narula J, Marwick TH. Roles of transechophageal echocardiogaphy and cardiac computed tomography for evaluation of left atrial thrombus and associated pathology: A review and critical analysis. JACC Cardiovasc Imaging. 2018;11(4):616-27.10.1016/j.jcmg.2017.12.01929622180 Search in Google Scholar

36. Khurram IM, Dewire J, Mager M, Maqbool F, Zimmerman SL, Zipunnikov V, et al. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm. 2013;10(12):1843-9.10.1016/j.hrthm.2013.09.06524076444 Search in Google Scholar

37. Lee Y, Park HC, Lee Y, Kim SG. Comparison of morphologic features and flow velocity of the left atrial appendage among patients with atrial fibrillation alone, transient ischemic attack, and cardioembolic stroke. Am J Cardiol. 2017;119(10):1596-604.10.1016/j.amjcard.2017.02.01628364953 Search in Google Scholar

38. Wu L, Liang E, Fan S, Zheng L, Du Z, Liu S, et al. Relation of left atrial appendage morphology determined by computed tomography to prior stroke or to increased risk of stroke in patients with atrial fibrillation. Am J Cardiol. 2019;123(8):1283-6.10.1016/j.amjcard.2019.01.02430709597 Search in Google Scholar

39. Nedios S, Kornej J, Koutalas E, Bertagnolli L, Kosiuk J, Rolf S, et al. Left atrial appendage morphology and thromboembolic risk after catheter ablation for atrial fibrillation. Heart Rhythm. 2014;11(12):2239-46.10.1016/j.hrthm.2014.08.01625128733 Search in Google Scholar

40. Zheng GA, Lin CY, Weng L, Chen JD. Left atrial appendage volume is a valuable predictor of atrial fibrillation recurrence after radiofrequency catheter ablation. Zhonghua Xin Xue Guan Bing Za Zhi. 2017;45(11):924-9. Search in Google Scholar

41. Du W, Dai M, Wang M, Gong Q, Ye TQ, Wang H, Luo CD. Large left atrial appendage predicts the ablation outcome in hypertensive patients with atrial fibrillation. J Electrocardiol. 2020;63:139-44.10.1016/j.jelectrocard.2020.07.01733212414 Search in Google Scholar

42. Patel SN, French A, Mathias H, Lyen S, Hamilton MC, Manghat NE. Presence of left atrial diverticula, accessory appendages, and normal variant pulmonary venous anatomy diagnosed using MDCT and adverse outcomes following radiofrequency catheter ablation therapy in patients with drug-refractory atrial fibrillation: an exploratory study. Clin Radiol. 2013;68(8):762-9.10.1016/j.crad.2013.02.00523541094 Search in Google Scholar

43. Demir GG, Güneş HM, Seker M, Savur Ü, Güler GB, Güler E, et al. Is the presence of left atrial diverticulum associated with recurrence in patients undergoing catheter ablation for atrial fibrillation? Arch Med Sci Atheroscler Dis. 2019;11(4):25-31.10.5114/amsad.2019.83508645114130963133 Search in Google Scholar

44. Peng LQ, Yu JQ, Yang ZG, Wu D, Xu JJ, Chu ZG, et al. Left atrial diverticula in patients referred for radiofrequency ablation of atrial fibrillation: assessment of prevalence and morphologic characteristics by dual-source computed tomography. Circ Arrhythm Electrophysiol. 2012;5(2):345-50.10.1161/CIRCEP.111.96566522345391 Search in Google Scholar

45. Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38(17): 1294-302.10.1093/eurheartj/ehw045 Search in Google Scholar

46. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57(17):1745-51.10.1016/j.jacc.2010.11.04521511110 Search in Google Scholar

47. Kim TH, Park J, Park JK, Uhm JS, Joung B, Lee MH, Pak HN. Pericardial fat volume is associated with clinical recurrence after catheter ablation for persistent atrial fibrillation, but not paroxysmal atrial fibrillation: an analysis of over 600-patients. Int J Cardiol. 2014;176(3):841-6.10.1016/j.ijcard.2014.08.00825176630 Search in Google Scholar

48. Kosehan D, Akin K, Koktener A, Cakir B, Aktas A, Teksam M. Interatrial shunt: diagnosis of patent foramen ovale and atrial septal defect with 64-row coronary computed tomography angiography. Jpn J Radiol. 2011;29(8):576-82.10.1007/s11604-011-0602-x21928000 Search in Google Scholar

49. Yasunaga D, Hamon M. MDCT of interatrial septum. Diagn Interv Imaging. 2015;96(9):891-9.10.1016/j.diii.2015.02.01125981979 Search in Google Scholar

50. Xiong L, Zeng Y, Gan T, Yan F, Bai J, Shi Y, et al. Assessing patent foramen ovale on coronary computed tomographic angiography: a comparison with transesophageal echocardiography. Jpn J Radiol. 2022;40(7):689-95.10.1007/s11604-021-01244-z35080696 Search in Google Scholar

51. Kiedrowicz R. Fire or ice in the treatment of atrial fibrillation? What do the results of the fire or ice trial tell us? WDR. 2016;41(4):37-40.10.5604/18967892.1223379 Search in Google Scholar

52. Takamiya T, Nitta J, Inaba, Sato A, Inamura Y, Kato N, et al. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation in hemodialysis patients. Heart Vessels. 2020;35(12): 1709-16.10.1007/s00380-020-01646-532524235 Search in Google Scholar

53. Wang Y, Wang W, Yao J, Chen L, Yi S. Second-generation cryoballoon vs. contact-force sensing radiofrequency catheter ablation in atrial fibrillation: a meta-analysis of randomized controlled trials. J Interv Card Electrophysiol. 2021;60(1):9-19.10.1007/s10840-020-00893-w33040244 Search in Google Scholar

54. Buiatti A, von Olshausen G, Barthel P, Schneider S, Luik A, Kaess B, et al. Cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: an updated meta-analysis of randomized and observational studies. Europace. 2017;19(3):378-84.10.1093/europace/euw26227702864 Search in Google Scholar

55. Matta M, Anselmino M, Ferraris F, Scaglione M, Gaita F. Cryoballoon vs. radiofrequency contact force ablation for paroxysmal atrial fibrillation: a propensity score analysis. J Cardiovasc Med (Hagerstown). 2018;19(4):141-47.10.2459/JCM.000000000000063329432399 Search in Google Scholar

56. Murray MI, Arnold A, Younis M, Varghese S, Zeiher AM. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2018;107(8):658-69.10.1007/s00392-018-1232-429564527 Search in Google Scholar

57. Inaba O, Metzner A, Rottner L, Mathew S, Lemes C, Maurer T, et al. Radiofrequency or cryoballoon ablation for index pulmonary vein isolation: What is the impact on long-term clinical outcomes after repeat ablation? J Cardiovasc Electrophysiol. 2020;31(5):1068-74.10.1111/jce.1443232128924 Search in Google Scholar

58. Glowniak A, Tarkowski A, Fic P, Wojewoda K, Wojcik J, Wysokinski A. Second-generation cryoballoon ablation for recurrent atrial fibrillation after an index procedure with radiofrequency versus cryo: different pulmonary vein reconnection patterns but similar long-term outcome – results of a multicenter analysis. J Cardiovasc Electrophysiol. 2019;30:1005-12.10.1111/jce.1393830938917 Search in Google Scholar

59. Ali AN, Riad O, Tawfik M, Opel A, Wong T. Newer generation cryoballoon vs. contact force-sensing radiofrequency ablation catheter in the ablation of paroxysmal atrial fibrillation. Herzschrittmacherther Elektrophysiol. 2021;32(2):236-43.10.1007/s00399-021-00763-633999265 Search in Google Scholar

60. Wieczorek M, Sassani K, Hoeltgen R. Comparison of pulmonary vein reconnection patterns after multielectrode phased radiofrequencyand cryoballoon ablation of atrial fibrillation. BMC Cardiovasc Disord. 2020;20(1):197.10.1186/s12872-020-01459-4718153132326885 Search in Google Scholar

61. Gunawardene MA, Hoffmann BA, Schaeffer B, Chung DU, Moser J, Akbulak RO, et al. Influence of energy source on early atrial fibrillation recurrences: a comparison of cryoballoon vs. radiofrequency current energy ablation with the endpoint of unexcitability in pulmonary vein isolation. Europace. 2018;20(1):43-9. Search in Google Scholar

62. Buist TJ, Adiyaman A, Smit JJ, Ramdat Misier AR, Elvan A. Arrhythmia-free survival and pulmonary vein reconnection patterns after second-generation cryoballoon and contact-force radiofrequency pulmonary vein isolation. Clin Res Cardiol. 2018;107(6):498-506.10.1007/s00392-018-1211-929411114 Search in Google Scholar

63. Chen CF, Zhong YG, Jin CL, Gao XF, Liu XH, Xu YZ. Comparing between second-generation cryoballoon vs open-irrigated radiofrequency ablation in elderly patients: Acute and long-term outcomes. Clin Cardiol. 2020;43(5):500-7.10.1002/clc.23335724430031943264 Search in Google Scholar

64. Mörtsell D, Arbelo E, Dagres N, Brugada J, Laroche C, Trines SA, et al. ESC-EHRA Atrial Fibrillation Ablation Long-Term Registry investigators. Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry. Europace. 2019;21(4):581-9.10.1093/europace/euy23930376055 Search in Google Scholar

65. Sørensen SK, Johannessen A, Worck R, Hansen ML, Hansen J. Radiofrequency versus cryoballoon catheter ablation for paroxysmal atrial fibrillation: durability of pulmonary vein isolation and effect on atrial fibrillation burden: The RACE-AF randomized controlled trial. Circ Arrhythm Electrophysiol. 2021;14(5):e009573.10.1161/CIRCEP.120.009573813646233835823 Search in Google Scholar

66. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: Implications for radiofrequency ablation. Radiology. 2004;230(3):824-9.10.1148/radiol.230303031514739316 Search in Google Scholar

67. Wannasopha Y, Oilmungmool N, Euathrongchit J. Anatomical variations of pulmonary venous drainage in Thai people: multidetector CT study. Biomed Imaging Interv J. 2012;8(1):e4. Search in Google Scholar

68. Mulder BA, Al-Jazairi MIH, Arends BKO, Bax N, Dijkshoorn LA, Sheikh U, et al. Pulmonary vein anatomy addressed by computed tomography and relation in paroxysmal atrial fibrillation. Clin Cardiol. 2019;42 (4):438-43.10.1002/clc.23163671231530756396 Search in Google Scholar

69. Schmidt M, Dorwarth U, Straube F, Daccarett M, Rieber J, Wankerl M, et al. Cryoballoon in AF ablation: Impact of PV ovality on AF recurrence. Int J Cardiol. 2013;167(1):114-20.10.1016/j.ijcard.2011.12.01722206633 Search in Google Scholar

70. Stachyra M, Szczasny M, Tarkowski A, Mianowana M, Wojewoda K, Wysokinska K, et al. Impact of pulmonary vein ovality index on cooling kinetics and acute success of atrial fibrillation ablation with the third-generation cryoballoon cathether. Adv Interv Cardiol. 2021;17(4):403-9.10.5114/aic.2021.110927880264335126556 Search in Google Scholar

71. Sorgente A, Chierchia GB, Asmundis C, Sarkozy A, Namdar M, Capulzini L, et al. Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballon ablation. Europace. 2011;13:205-12.10.1093/europace/euq38820974756 Search in Google Scholar

72. Kajiyma T, Miyazaki S, Matsuda J, Watanabe T, Niida T, Takagi T, et al. Anatomic parameters predicting procedural difficulty and balloon temperature predicting successful applications in individual pulmonary veins during 28mm second-generation cryoballoon ablation. Jacc Clin Electrophysiol. 2017;3(6):580-8.10.1016/j.jacep.2017.01.00429759431 Search in Google Scholar

73. Boussoussou M, Szilveszter B, Vattay B, Kolossváry M, Vecsey-Nagy M, Salló Z, et. al. The effect of left atrial wall thickness and pulmonary vein sizes on the acute procedural success of atrial fibrillation ablation. Int J Cardiovasc Imaging. 2022;38:1601-11.10.1007/s10554-022-02533-y35138472 Search in Google Scholar

74. Istratoaie S, Roșu R, Cismaru G, Vesa ȘC, Puiu M, Zdrenghea D, et.al. The impact of pulmonary vein anatomy on the outcomes of catheter ablation for atrial fibrillation. Medicina (Kaunas). 2019;55(11):727.10.3390/medicina55110727691542931690031 Search in Google Scholar

75. Ronsoni RM, Silvestrini TL, Essebag V, Lopes RD, Lumertz Saffi MA, Luz Leiria TL. Association of the left common ostium with clinical outcome after pulmonary vein isolation in atrial fibrillation. Indian Pacing Electrophysiol J. 2021;21(2):95-100.10.1016/j.ipej.2020.11.020795277033271275 Search in Google Scholar

76. Hanaki Y, Yoshida K, Baba M, Hasebe H, Takeyasu N, Nogami A, Ieda M. Interatrial distance predicts the necessity of additional carina ablation to isolate the right-sided pulmonary veins. Heart Rhythm. 2020;1(4):259-67.10.1016/j.hroo.2020.08.003818389034113879 Search in Google Scholar

77. Baran J, Piotrowski R, Sikorska A, Kowalik I, Krynski T, Stec S, et al. Impact of pulmonary vein ostia anatomy on efficacy of cryoballoon ablation for atrial fibrillation. Heart Beat J. 2016;1:65-70.10.24255/hbj/68162 Search in Google Scholar

78. Matsumoto Y, Muraoka Y, Funama Y, Mito S, Masuda T, Sato T, et al. Analysis of anatomical features of pulmonary veins on preprocedural cardiac CT images resulting in incomplete cryoballoon ablation for atrial fibrillation. J Cardiovasc Comput Tomogr. 2019;13(2):118-27.10.1016/j.jcct.2018.11.00530466810 Search in Google Scholar

79. Kocyigit D, Yalcin MU, Gurses KM, Selin A, Turk G, Canpolat U, et al. Pulmonary vein orientation is independently associated with outcomes following cryoballoon-based atrial fibrillation ablation. J Cardiovasc Comput Tomogr. 2018;12(4):281-5.10.1016/j.jcct.2018.01.01129500095 Search in Google Scholar

eISSN:
2300-6676
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere, Pharmakologie, Toxikologie, Pharmazie