Uneingeschränkter Zugang

On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks

,  und   
05. Dez. 2018

Zitieren
COVER HERUNTERLADEN

We identify sufficient conditions for the stability of some well-known finite difference schemes for the solution of the multivariable reaction-diffusion equations that model chemical reaction networks. Since the equations are mainly nonlinear, these conditions are obtained through local linearization. A recurrent condition is that the Jacobian matrix of the reaction part evaluated at some positive unknown solution is either D-semi-stable or semi-stable. We demonstrate that for a single reversible chemical reaction whose kinetics are monotone, the Jacobian matrix is D-semi-stable and therefore such schemes are guaranteed to work well.

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Numerik und wissenschaftliches Rechnen, Angewandte Mathematik