1. bookVolume 58 (2021): Issue 1 (June 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
17 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Asymmetry models based on ordered score and separations of symmetry model for square contingency tables

Online veröffentlicht: 24 Jun 2021
Seitenbereich: 27 - 39
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
17 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Agresti A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters 1: 313–316. Search in Google Scholar

Agresti A. (2002): Categorical Data Analysis, 2nd edition. Wiley, New York. Search in Google Scholar

Bagheban A.A., Zayeri,F. (2010): A generalization of the uniform association model for assessing rater agreement in ordinal scales. Journal of Applied Statistics 37: 1265–1273. Search in Google Scholar

Bishop Y.M.M., Fienberg S.E., Holland P.W. (1975): Discrete multivariate analysis: theory and practice. The MIT Press, Cambridge: Massachusetts. Search in Google Scholar

Bowker A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574. Search in Google Scholar

Bross I.D.J. (1958): How to use ridit analysis. Biometrics 14: 18–38. Search in Google Scholar

Graubard B.I., Korn E.L. (1987): Choice of column scores for testing independence in ordered 2 × K contingency tables. Biometrics 43: 471–476. Search in Google Scholar

Iki K., Tahata K., Tomizawa S. (2009): Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories. Austrian Journal of Statistics 38: 183–192. Search in Google Scholar

Senn S. (2007): Drawbacks to noninteger scoring for ordered categorical data. Biometrics 63: 296–299. Search in Google Scholar

Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42. Search in Google Scholar

Tomizawa S. (1990): Another linear diagonals-parameter symmetry model for square contingency tables with ordered categories. South African Statistical Journal 24: 117–125. Search in Google Scholar

Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: Application to decayed teeth data. Biometrical Letters 43: 91–98. Search in Google Scholar

Yamamoto H., Iwashita T., Tomizawa S. (2007): Decomposition of symmetry into ordinal quasi-symmetry and marginal equimoment for multi-way tables. Austrian Journal of Statistics 36: 291–306. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo