1. bookVolume 58 (2021): Issue 1 (June 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
17 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

The Pearson Bayes factor: An analytic formula for computing evidential value from minimal summary statistics

Online veröffentlicht: 24 Jun 2021
Seitenbereich: 1 - 26
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
17 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Faulkenberry T.J. (2018): Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation. Biometrical Letters 55(1): 31–43. Search in Google Scholar

Faulkenberry T.J. (2019a): Estimating Bayes factors from minimal ANOVA summaries for repeated-measures designs. arXiv:1905.05569. Search in Google Scholar

Faulkenberry T.J. (2019b): Estimating evidential value from analysis of variance summaries: A comment on Ly (2018). Advances in Methods and Practices in Psychological Science 2(4): 406–409. Search in Google Scholar

Fisher R.A. (1925): Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh. Search in Google Scholar

García-Donato G., Sun D. (2007): Objective priors for hypothesis testing in one-way random effects models. Canadian Journal of Statistics, 35(2): 303–320. Search in Google Scholar

Gönen M., Johnson W.O., Lu Y., Westfall P.H. (2005): The Bayesian two-sample t test. The American Statistician, 59(3): 252–257. Search in Google Scholar

Jeffreys H. (1961): The Theory of Probability (3rd ed.). Oxford University Press, Oxford, UK. Search in Google Scholar

Kass R.E., Raftery A.E. (1995): Bayes factors. Journal of the American Statistical Association, 90(430): 773. Search in Google Scholar

Liang F., Paulo R., Molina G., Clyde M.A., Berger J.O. (2008): Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481): 410–423. Search in Google Scholar

Maruyama Y. (2009): A Bayes factor with reasonable model selection consistency for ANOVA model. arXiv:0906.4329v2. Search in Google Scholar

Masson M.E.J. (2011): A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3): 679–690. Search in Google Scholar

Raftery A.E. (1995): Bayesian model selection in social research. Sociological Methodology, 25: 111–163. Search in Google Scholar

Rouder J.N., Engelhardt C.R., McCabe S., Morey R.D. (2016): Model comparison in ANOVA. Psychonomic Bulletin & Review, 23(6): 1779–1786. Search in Google Scholar

Rouder J.N., Morey R.D., Speckman P.L., Province J.M. (2012): Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5): 356–374. Search in Google Scholar

Schwarz G. (1978): Estimating the dimension of a model. The Annals of Statistics, 6(2): 461–464. Search in Google Scholar

Sellke T., Bayarri M.J., Berger J.O. (2001): Calibration of p-values for testing precise null hypotheses. The American Statistician, 55(1): 62–71. Search in Google Scholar

Student (1908): The probable error of a mean. Biometrika, 6(1):1. Search in Google Scholar

Thiele J.E., Haaf J.M., Rouder J.N. (2017): Is there variation across individuals in processing? Bayesian analysis for systems factorial technology. Journal of Mathematical Psychology, 81: 40–54. Search in Google Scholar

Wagenmakers E.J. (2007): A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5): 779–804. Search in Google Scholar

Wang M., Liu G. (2016): A simple two-sample Bayesian t-test for hypothesis testing. The American Statistician, 70(2): 195–201. Search in Google Scholar

Wang M., Sun X. (2014): Bayes factor consistency for one-way random effects model. Communications in Statistics - Theory and Methods, 43(23): 5072–5090. Search in Google Scholar

Wasserstein R.L., Lazar N.A. (2016): The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2): 129–133. Search in Google Scholar

Zellner A. (1986): On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Goel, P. K. and Zellner, A., editors, Bayesian inference and decision techniques: Essays in Honor of Bruno de Finetti, pages 233–243. Elsevier. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo