Uneingeschränkter Zugang

The use of cowpeas (Vigna unguiculata [L] Walp) in poultry diets: A review


Zitieren

Abdelgani, A.A., Abdelatti, K.A., Elamin, K.M., Dafalla, K.Y., Malik, H.E.E. Dousa, M.B. (2013). Effects of dietary cowpea (Vigna unguiculata) seeds on the performance of broiler chicks. Wayamba J. Anim. Sci. 5: 678–684. Search in Google Scholar

Abidin, Z. & Khatoon, A. (2013). Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World’s Poult. Sci. J. 69: 135–152. Search in Google Scholar

Abizari, A.R., Moretti, D., Schuth, S., Zimmermann, B., Armar-Klemesu, M.B., Brouwer, I.D. (2012). Phytic acid-to-iron molar ratio rather than polyphenol concentration determines iron bioavailability in whole-cowpea meals among young women. J. Nutr. 142(11): 1950–1955. Search in Google Scholar

Adebooye, O.C. & Singh, V. (2007). Effect of cooking on the profile of phenolics, tannins, phytate, amino acid, fatty acid and mineral nutrients of whole-grain and decorticated vegetable cowpea (Vigna unguiculata L. Walp). J Food Qual. 30: 1101–1120. Search in Google Scholar

Adino, S., Wondifraw, Z., Addis, M. (2018). Replacement of soybean grain with cowpea grain (Vigna unguiculata) as a protein supplement in Sasso x Rir crossbred chicks diet. Poult. Fish Wildl. Sci. 6(1): 1–6. Search in Google Scholar

Affrifah, N.S., Phillips, R.D., Saalia, F.K. (2022). Cowpeas: Nutritional profile, processing methods, and products—A review. Legum. Sci. 4(3): 131. Search in Google Scholar

Afiukwa, C.A., Onwuchekwa, O., Ibiam, U.A., Edeogu, C.O., Aja, P.M. (2012). Characterization of cowpea cultivars for variations in seed contents of some antinutritional factors (ANFs). Continental J. Food Sci. Technol. 6: 25–34. Search in Google Scholar

Agarwal, A. (2016). Duality of anti-nutritional factors in pulses. J. Nutr. Disord. Ther. 6(1): 1–2. Search in Google Scholar

Aguilera, Y., Diaz, M.F., Jimenez, T., Benitez, V., Herrera, T., Cuadrado, C. Martín-Pedrosa, M. Martín-Cabrejas M.A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. J. Agric. Food Chem. 61: 8120–8125. Search in Google Scholar

Akande, K.E. & Fabiyi, E.F. (2010). Effect of processing methods on some antinutritional factors in legume seeds for poultry feeding. Int. J. Poult. Sci. 9 (10): 996–1001. Search in Google Scholar

Akanji, A.M., Fasina, O.E., Ogungbesan, A.M. (2016). Effect of raw and processed cowpea on growth and hematological profile of broiler chicken. B. J. Anim. Sci. 45(1): 62–68. Search in Google Scholar

Alagawany, M., Elnesr, S.S., Farag, M.R., Tiwari, R., Yatoo, M.I., Karthik, K., Michalak, I., Dhama, K. (2021). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–a comprehensive review. Vet. Q. 41(1): 1–29. Search in Google Scholar

Ali, A., Al-Saady, N.A., Waly, M.I., Bhatt, N., Al-Subhi, A.M., Khan, A.K. (2013). Evaluation of indigenous Omani legumes for their nutritional quality, phytochemical composition and AA antioxidant properties. Int. J. Postharvest Technol. Innov. 3: 333–346. Search in Google Scholar

Amaefule, F.O., Obua, B.E., Ukweni, I.A., Oguike, M.A., Amaka, R.A. (2008). Haematological and biochemical profile of weaner rabbits fed raw or processed pigeon pea seed meal-based diets. Afr. J. Agri. Res. 3(4): 315–319. Search in Google Scholar

Anjos, D.F. Vazquez-Anon, M., Dierenfeld, E.S., Parsons, C.M., Chimonyo, M. (2016). Chemical composition, amino acid digestibility, and true metabolizable energy of cowpeas as affected by roasting and extrusion processing treatments using the cecectomized rooster assay. J Appl Poult Res. 25(1): 85–94. Search in Google Scholar

Antova, G.A., Stoilova, T.D., Ivanova, M.M. (2014). Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33: 146–152. Search in Google Scholar

Avanza, M., Acevedo, B., Chaves, M., Anon, M. (2013). Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT – Food Sci. Technol. 51: 148–157. Search in Google Scholar

Azeke, M.A., Elsanhoty, R.M., Egielewa, S.J., Eigbogbo, M.U. (2011). The effect of germination on the phytase activity, phytate and total phosphorus contents of some Nigerian-grown grain legumes. J. Sci. Food Agric. 91: 75–79. Search in Google Scholar

Baptista, A., Pinho, O., Pinto, E., Casal, S., Mota, C., Ferreira, I.M. (2017). Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp), and Bambara groundnuts (Vigna subterranean L. Verdc) from Mozambique. J. Food Meas. Charact. 11(2): 442–450. Search in Google Scholar

Belal, N.G., Abdelati, K.A., Albala, S. (2011). Effect of dietary processed cowpea (Vigna unguiculata) seeds on broiler performance and internal organ weights. Res. J. Anim. Vet. Sci. 6: –11. Search in Google Scholar

Belloir, P., Lessire, M., Lambert, W., Corrent, E., Berri, C., Tesseraud, S. (2019). Changes in body composition and meat quality in response to dietary amino acid provision in finishing broilers. Anim. 13(05): 1094–1102. Search in Google Scholar

Bunchasak, C. (2009). Role of dietary methionine in poultry production. J. Of Poult Sci. 46(3): 169–179. Search in Google Scholar

Carneiro da Silva, A., da Costa Santos, D., Lopes Teixeira Junior, D., Bento da Silva, P., Cavalcante Dos Santos, R., Siviero, A. (2018). Cowpea: A strategic legume species for food security and health. Legume Seed Nutraceutical Research. https://doi.org/10.5772/intechOpen.79006 Search in Google Scholar

Carvalho, A.F.U., de Sousa, N.M., Faria,s D.F., da Rocha-Bezerra, L.C.B., da Silva, R.M.P., Gouveia, S.T., Sampaio, S.S., de Sousa, M.B., de Lima, G.P.G., de Morais, S.M. (2012). Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compost. Anal. 26 (1–2): 81–88. Search in Google Scholar

Chakam, V.P., Teguia, A., Tchoumboue, J. (2010). Performance of finisher broiler chickens as affected by different proportions of cooked cowpeas (Vigna unguiculata) in the grower-finisher diet. AJPAND 10(4): 2427–2438. Search in Google Scholar

Chen, Y.P., Cheng, Y.F., Li, X.H., Yang, W.L., Wen, C., Zhuang, S., Zhou, Y.M. (2017). Effects of threonine supllementation on the growth performance, immunity, oxidative status, intestinal integrity and barrier function of broilers at the early age. Poult. Sci. 96(2): 405–413 Search in Google Scholar

Chikwendu, J.N., Igbatim, A.C., Obizoba, I.C. (2014). Chemical composition of processed cowpea tender leaves and husks. Int. J. Sci. Res. Publ. 4: 1–5. Search in Google Scholar

Ciurescu, G., Vasilachi, A., Grosu, H. (2020). Efficacy of Microbial Phytase on Growth Performance, Carcass Traits, Bone Mineralization, and Blood Biochemistry Parameters in Broiler Turkeys Fed Raw Chickpea (Cicer arietinum L., Cv. Burnas) Diets. J. Appl. Poult. Res. 29, 171–184. Search in Google Scholar

Ciurescu, G., Vasilachi, A., Ropotă, M. (2022a). Effect of dietary cowpea (Vigna unguiculata [L] Walp) and chickpea (Cicer arietinum L.) seeds on growth performance, blood parameters and breast meat fatty acids in broiler chickens. Ital. J. Anim. Sci. 21(1): 97–105. Search in Google Scholar

Ciurescu, G., Idriceanu, L., Gheorghe, A., Ropotă, M., Drăghici, R. (2022b). Meat quality in broiler chickens fed on cowpea (Vigna unguiculata [L.] Walp) seeds. Sci. Rep. 12: 9685 https://doi.org/10.1038/s41598-022-13611-5. Search in Google Scholar

Corzo, A., Kidd, M.T., Thaxton, K.P., Kerr, B.J. (2005). Dietary tryptophan effects on growth and stress responses of male broiler chicks. Br. Poult. Sci. 46(4): 478–484. Search in Google Scholar

Corzo, A., Loar II., R.E., Kidd, M.T. (2009). Limitations of dietary isoleucine and valine in broiler chick diets. Poult. Sci. 88(9): 1934–1938 Search in Google Scholar

Cui, E.J., Song, N.Y., Shrestha, S., Chung, I.S., Kim, J.Y., Jeong, T.S., Baek N.I. (2012). Flavonoid glycosides from cowpea seeds (Vigna sinensis K.) inhibit LDL oxidation. Food Sci. Biotechnol. 21: 619–624. Search in Google Scholar

Defang, H.F., Teguia A., Awah-Ndukum, J., Kenfack, A., Ngoula, F., Metuge F. (2008). Performance and carcass characteristics of broilers fed boiled cowpea (Vigna unguiculata L Walp) and or black common bean (Phaseolus vulgaris) meal diets. Afr. J. Biotechnol. 7(9): 1351–1356. Search in Google Scholar

Domínguez-Perles, R., Machado N., Abraão A.S., Carnide V., Ferreira L., Rodrigues, M., Rosa E.A., Barros A.I. (2016). Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L.) diversity. J. Food Compost. Anal. 53: 69–76. Search in Google Scholar

Egounlety, M. & Aworh O.C. (2003). Effect of soaking, dehulling, cooking, and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and ground bean (Macrotyloma geocarpa Harms). J. Food Eng. 56: 249–254. Search in Google Scholar

Eljack, B.H., Fadlalla, I.M.T., Ibrahim, M.T. (2010). The effect of feeding cowpea (Vigna ungialata) on broiler chicks performance and some carcass quality measurements. Assiut Vet. Med. J. 56(124): 1–8. Search in Google Scholar

Embaye, T.N., Ameha, N., Yusuf, Y. (2018). Effect of cowpea (Vigna unguiculata) grain on growth performance of Cobb 500 broiler chickens. Int. J. Livest. Prod. 9(12): 326–33. Search in Google Scholar

Emiola, I.A., Ologhobo A.D., Adepeju T.A., Oladunjoye I.O., Akanji, A.M. (2003). Performance characteristic of broiler chicks fed kidney beans as replacement for two conventional legumes. Moor J. Agric. Res. 4: 236–241. Search in Google Scholar

Enyiukwu, D.N., Amadioha, A.C., Ononuju, C.C. (2018). Biochemical composition, potential food and feed values of aerial parts of cowpea (Vigna unguiculata (L.) Walp). Greener Trends Food Sci. Nutr. 2018b 1: 11–8. Search in Google Scholar

FAO. (2021). Crop Production and Trade Data. (accesed March 31, 2023) Search in Google Scholar

Fouad, A. M., El-Senousey, H.K., Yang, X.J. Yao, J.H. (2012). Role of dietary L-arginine in poultry production. Int. J. Poult. Sci. 11(11):718 Search in Google Scholar

Frías, J., Jimeno M.L., Vidal-Valverde C. (2005). Inositol phosphate profiling of fermented cowpeas by H-1 NMR spectroscopy. J. Agric. Food Chem. 53: 4714–4721. Search in Google Scholar

Gonçalves, A., Goufo, P., Barros, A., Domínguez-Perles, R., Trindade, H., Rosa, E.A., Ferreira, L., Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages and constraints. J. Sci. Food Agric. 96: 2941–2951. Search in Google Scholar

Granito, M., Torres, A., Frias, J., Guerra, M., Vidal-Valverde, C. (2005). Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol. 220: 176–181. Search in Google Scholar

Gumaa Balaiel G.N. (2014). Effect of dietary levels of cowpea (Vigna unguiculata) seeds on broiler performance and some serum biochemical factors. J. Anim. Feed Res. 4(1): 01–05. Search in Google Scholar

Gupta, P., Singh, R., Malhotra, S., Boora, K.S., Singal, H.R. (2010). Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp]. Physiol. Mol. Biol. Plants. 16(1): 53–58. Search in Google Scholar

Hachibamba T., Dykes L., Awika J., Minnaar A., Duodu K,G. (2013). Effect of simulated gastrointestinal digestion on phenolic composition and antioxidant capacity of cooked cowpea (Vigna unguiculata) varieties. Int. J. Food Sci. Technol. 48: 2638–2649. Search in Google Scholar

Ibrahim S.S., Habiba R.A., Shatta A.A., Embaby H.E. (2002). Effect of soaking, germination, cooking, and fermentation on antinutritional factors in cowpeas. Food Nahrung 46(2): 92–95. Search in Google Scholar

Iqbal, A., Khalil I.A., Ateeq, N., Khan, M.S. (2006). Nutritional quality of important food legumes. Food Chem. 97(2): 331–335. Search in Google Scholar

José F., Cruz, R., Júnior de Almeida, H., Maria, D., Dos Santos, M. (2014). Growth, nutritional status and nitrogen metabolism in Vigna unguiculata (L.) Walp is affected by aluminum. Aust. J. Crop. Sci. 8(7): 1132–1139. Search in Google Scholar

Jump, D.B., Depner, C.M., Tripathy, S. (2012). Omega-3 fatty acid supplementation and cardiovascular disease: thematic review series: new lipid and lipoprotein targets for the treatment of cardiometabolic diseases. J. Lipid Res. 53(12): 2525–2545. Search in Google Scholar

Kalogeropoulos, N., Chiou A., Ioannou M., Karathanos, V.T., Hassapidou, M., Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpene acids) in cooked dry legumes usually consumed in Mediterranean countries. Food Chem. 121: 682–690. Search in Google Scholar

Kana, J.R., Teguia, A., Fomekong, A. (2012). Effect of substituting soybean meal whit cowpea (Vigna Unguiculata WAL) supplemented with natural plant charcoals in broiler diet on growth performance and carcass characteristics. Iran. J. Appl. Anim. Sci. 2(4): 377–381. Search in Google Scholar

Khalid, I.I. & Elhardallou S.B. (2016). Factors that compromise the nutritional value of cowpea flour and its protein isolates. Food Nutr. Sci. 7: 112–121. Search in Google Scholar

Khattab, R.Y. & Arntfield S.D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT – Food Sci. Technol. 42: 1113–1118. Search in Google Scholar

Kim, D.K., Kim, Y.M., Chon, S.U., Rim, Y.S., Choi, J.G., Kwon, O.D., Park H.G., Shin H.R., Choi K.J. (2014). Growth response and nutrient content of cowpea sprouts based on growth temperature and genetic resources. Korean J. Crop. Sci. 59(3): 332–340. Search in Google Scholar

Kirs, A. & Karklina D. (2015). Integrated evaluation of cowpea (Vigna unguiculata (L.) Walp.) and maple pea (Pisum sativum var. arvense L.) spreads. Agron. Res. 13(4): 956–68. Search in Google Scholar

Kur, A.T.Y., Abdelatti K.A., Dousa, B.M., Elagib, H.A.A., Malik, H.E.E. Elamin, K. M. (2013). Effect of treated cowpea seeds on broiler chicken. Glob. J. Anim. Sci. Res. 1(1): 58–65. Search in Google Scholar

Lakra, P. & Gahlawat I.N. (2016). The role of Nutrition in the Immune system functions. Integrated J. Soc. Sci. 3(1): 30–33. Search in Google Scholar

Liyanage, R., Perera, O.S., Weththasinghe, P., Jayawardana B.C., Vidanaarachchi J.K., Sivakanesan R. (2014). Nutritional properties and antioxidant content of commonly consumed cowpea cultivars in Sri Lanka. J. Food Legum. 27(3): 215–217. Search in Google Scholar

Lohakare, J., Ryu, M., Hahn, T.W., Lee, J., Chae, B. (2005). Effects of supplemental ascorbic acid on the performance and immunity of commercial broilers. J. Appl. Poult. Res. 14: 10–19. Search in Google Scholar

Madodé, Y.E., Linnemann, A.R., Nout, M.J., Vosman, B., Hounhouigan, D.J., van Boekel, M.A. (2012). Nutrients, technological properties and genetic relationships among twenty cowpea landraces cultivated in West Africa. Int. J. Food Sci. Tech. 47(12): 2636–2647. Search in Google Scholar

Mfeka, N., Mulidzi, R.A., Lewu, F.B., (2019). Growth and yield parameters of three cowpeas (Vigna unguiculata L. Walp) lines as affected by planting date and zinc application rate. S. Afr. J. Sci. 115(1–2):1–9. Search in Google Scholar

Makinde, F.M. & Abolarin, O.O. (2020). Effect of post dehulling treatments on antinutritional and functional properties of cowpea (Vigna unguiculata) flour. J. Appl. Sci. Environ Manage. 24(9): 1641–1647. Search in Google Scholar

Nderitu, A.M., Dykes L., Awika, J.M, Minnaar, A., Duodu, K.G. (2013). Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chem. 141: 1763–1771. Search in Google Scholar

Nisha, P., Singhal, R.S., Pandit, A.B. (2005). Degradation kinetics of folic acid in cowpea (Vigna catjang L.) during cooking. Int. J. Food Sci. Nutr. 56: 389–397. Search in Google Scholar

NRC. 1994. Nutrient Requirements of Poultry. 9th ed. National. Academy Press, Washington, DC, USA. Search in Google Scholar

Nwosu, J.N., Onuegbu, N.C., Ogueke, C.C., Kabuo, N.O., Omeire, G.C. (2014). Acceptability of moin-moin produced from blends of African yam bean (Sphenostylis stenocarpa) and cowpea (Vigna unguiculata). Int. J. Curr. Microbiol. Appl. Sci. 3(9): 996–1004. Search in Google Scholar

Ojimelukwe, P.C., Nwofia G.E., Nnadi O. (2014). Comparison of the nutrient composition and physical characteristics of Nigerian local vegetable cowpea varieties (Vigna unguiculata Walp) and exotic ones. Int. J. Curr. Res. 6: 4873–4876. Search in Google Scholar

Ojwang, L.O., Yang, L.Y., Dykes, L., Awika, J. (2013). The proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 139: 35–43. Search in Google Scholar

Okonya, J.S & Maass, B. (2014). Protein and iron composition of cowpea leave an evaluation of six cowpea varieties grown in eastern Africa. Afr. J. Food Agric. Nutr. Dev. 14: 2129–2140. Search in Google Scholar

Olivera-Castillo, L., Pereira-Pacheco, F., Polanco-Lugo, E., Olvera-Novoa, M., Rivas-Burgos, J., Grant, G. (2007). Composition and bioactive factor content of cowpea (Vigna unguiculata L. Walp) raw meal and protein concentrate. J. Sci. Food Agric. 87: 112–119. Search in Google Scholar

Omenna, E.C., Olanipekun, O.T., Kolade, R.O. (2016). Effect of boiling, pressure cooking, and germination on cowpeas nutritional and antinutrients content (Vigna unguiculata). ISABB J. Food Agric. Sci 6(1): 1–8. Search in Google Scholar

Onwuka, G.I. (2006). Soaking, boiling, and anti-nutritional factors in pigeon peas (Cajanus cajan) and cowpeas (Vigna unguiculata). J. Food Process. Pres. 30: 616–630. Search in Google Scholar

Onwuliri, V.A & Obu, J.A. (2002). Lipids and other constituents of Vigna unguiculata and Ph,aseolus vulgaris grown in northern Nigeria. Food Chem. 78: 1–7. Search in Google Scholar

Owolabi, A.O., Ndidi, U.S., James, B.D., Amune, F.A. (2012). Proximate, antinutrient, and mineral composition of five varieties (improved and local) of cowpea, Vigna unguiculata, commonly consumed in Samaru community, Zaria-Nigeria. Asian J. Food Sci. Tech. 4(2): 70–72. Search in Google Scholar

Parul, B. (2014). Antinutritional factors in foods and their effects. J. Acad. Ind. Res. 3(6): 285–290. Search in Google Scholar

Popova, A. & Mihaylova, D. (2019). Antinutrients in plant-based foods: A Review. Open Biotechnol. J. 13: 68–76. Search in Google Scholar

Ragab, H.I. Kijora, C., Ati, K.A., Danier, J. (2010). Effect of traditional processing on the nutritional value of some legumes seeds produced in Sudan for poultry feeding. Int. J. Poult Sci. 9(2): 198–204. Search in Google Scholar

Rogério, W.F., Greiner, R., Nunes, I.L., Feitosa, S., Furtunato, D.M.D.N., Almeida, D.T.D. (2014). Effect of preparation practices and the cowpea cultivar Vigna unguiculata L. Walp on the quality and content of myoinositol phosphate in akara (fried bean paste). Food Sci. Tech. 34: 243–248. Search in Google Scholar

Shakeri, M., Oskoueian, E., Le, H.H., Shakeri, M. (2020). Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 7(2): 71. Search in Google Scholar

Sreerama, Y.N., Sashikala, V.B., Pratape, V.M. Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 131(2): 462–468. Search in Google Scholar

Teguia, A., Japou, I.B., Kamsu, E.C. (2003). Response of broiler chickens to Vigna unguiculata (L.) walp (cowpea) Phaseolus vulgaris (black bean) and Voanzeia subterranean (Bambara groundnut) as feed ingredients in replacement of meat meals. J. Anim. Feed Sci. 11: 127–133. Search in Google Scholar

Thangadurai, D. (2005). Chemical composition and nutritional potential of Vigna unguiculata ssp Cylindrica (Fabaceae). J. Food Biochem. 29(1): 88–98 Search in Google Scholar

Torres, J., Muñoz L. S., Peters M., Montoya C. A. (2013) “Characterization of the nutritive value of tropical legume grains as alternative ingredients for small‐scale pork producers using in vitro enzymatic hydrolysis and fermentation.” J. Anim. Phy. Anim Nut. 97(6): 1066–1074. Search in Google Scholar

Towett, E.K., Alex, M., Shepherd, K.D., Polreich, S., Aynekulu, E., Maass, B.L. (2013). Applicability of near‐infrared reflectance spectroscopy (NIRS) for determination of crude protein content in cowpea (Vigna unguiculata) leaves. Food Sci. Nutr. 1(1): 45–53. Search in Google Scholar

Tresina, P.S. & Mohan, V.R. (2011). Effect of gamma irradiation on physicochemical properties, proximate composition, vitamins and antinutritional factors of the tribal pulse Vigna unguiculata subsp. unguiculata. Int. J. Food Sci. Techno. 46(8): 1739–1746. Search in Google Scholar

Tshovhote, N.J., Nesamvuni, A.E., Raphulu, T., Gous, R.M. (2003). The chemical composition, energy and amino acid digestibility of cowpeas used in poultry nutrition. South Afr. J. Anim. Sci. 33: 65–69. Search in Google Scholar

Udensi, E.A., Ekwu, F.C., Isinguz, J.N. (2007). Antinutrient factors of vegetable cowpea (Sesquipedalis) seeds during thermal processing. Pak. J. Nutr. 6(2): 194–7. Search in Google Scholar

Ukpabi, U.H., Amaefule, K.U., Amaefule, O.M. (2008). Performance of broilers fed raw bambarra groundnut [Vigna subterranean (L.) Verdc] offal diets supplemented with lysine and or methionine. Int. J. Poul. Sci. 7(12): 1177–1181. Search in Google Scholar

Vasconcelos, I.M., Maia, F.M.M., Farias, D.F., Campello, C.C., Carvalho, A.F.U., de Azevedo Moreira, R., de Oliveira, J.T.A. (2010). Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. J. Food Compost. Anal. 23(1): 54–60. Search in Google Scholar

Weng, Y., Ravelombola, W.S., Yang, W., Qin, J., Zhou, W., Wang, Y.J., Mou, B., Shi, A. (2018). Screening of seed soluble sugar content in cowpea (Vigna unguiculata (L.) Walp). Am. J. Plant Sci. 9(7): 1455–1466. Search in Google Scholar

Xiong, S., Yao, X., Li, A. (2013). Antioxidant properties of peptide from cowpea seed. Int. J. Food Prop. 16(6): 1245–1256. Search in Google Scholar

Xu, B.J. & Chang, S.K.C. (2012). Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem. 134: 1287–1296. Search in Google Scholar

Xu, Y.Q., Guo, Y.W., Shi, B.L., Yan, S.M., Guo, X.Y. (2018). Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest. Sci. 209: 8- Search in Google Scholar

eISSN:
2344-4592
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere