Debailleux, L. Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks. International Journal of Architectural Heritage, vol. 13, no. 2, 2019, pp. 288–297. https://doi.org/10.1080/15583058.2018.1436204Search in Google Scholar
Martínez-Soto, F., Ávila, F., Puertas, E., Gallego, R. Spectral analysis of surface waves for non-destructive evaluation of historic masonry buildings. Journal of Cultural Heritage, vol. 52, 2021, pp. 31–37. https://doi.org/10.1016/j.culher.2021.09.002.Search in Google Scholar
Cotič, P., Jagličić, Z., Bosiljkov, V. Validation of non-destructive characterization of the structure and seismic damage propagation of plaster and texture in multi-leaf stone masonry walls of cultural-artistic value. Journal of Cultural Heritage, vol. 15, no. 5, 2014, pp. 490–498. https://doi.org/10.1016/j.culher.2013.11.004.Search in Google Scholar
Shrestha, R., Sfarra, S., Ridolfi, S., Gargiulo, G., Kim, W. A numerical–thermal–thermographic NDT evaluation of an ancient marquetry integrated with X-ray and XRF surveys. Journal of Thermal Analysis awnd Calorimetry, vol. 147, 2022, pp. 2265–2279. https://doi.org/10.1007/s10973-021-10571-2Search in Google Scholar
Sfarra, S., Bendada, A., Ibarra-Castanedo, C., Ambrosini, D., Maldague, X. Santa Maria di Collemaggio Church (L’Aquila, Italy): Historical Reconstruction by Non-Destructive Testing Techniques. International Journal of Architectural Heritage, vol. 9, no. 4, 2015, pp. 367–390. https://doi.org/10.1080/15583058.2013.794376Search in Google Scholar
De Fino, M., Scioti, A., Rubino, R., Fatiguso, F. Assessment of historic buildings by radar techniques. Structural Survey, vol. 34, no. 1, 2016, pp. 73–94. https://doi.org/10.1108/SS-07-2015-0035Search in Google Scholar
Gil, E., Mas, Á., Lerma, C., Torner, M. E., Vercher, J. Non-destructive Techniques Methodologies for the Detection of Ancient Structures under Heritage Buildings. International Journal of Architectural Heritage, vol. 15, no. 10, 2021, pp. 1457–1473. https://doi.org/10.1080/15583058.2019.1700320Search in Google Scholar
Spodek, J., Rosina, E. Application of Infrared Thermography to Historic Building Investigation. Journal of Architectural Conservation, vol. 15 no. 1, 2009, pp. 65–81. https://doi.org/10.1080/13556207.2009.10785040Search in Google Scholar
Pehlivan, E. Archaeological Evaluation and Provenance Analysis of Apollon’s Torso in Sivas Archaeological Museum. Mediterranean Archaeology and Archaeometry, vol. 22, no. 1, 2022, pp. 97–109.Search in Google Scholar
Pehlivan, E. A Comprehensive Approach of XRF and Analogical Study of a Phrygian Fibula. Mediterranean Archaeology and Archaeometry, vol. 22, no. 3, 2022, pp. 265–279.Search in Google Scholar
Gulsu, S., Colomban, P., Casadio, F., Bellot-Gurlet, L., Zelleke, G., Faber, K.T., Milande, V., Tilliard, L. On-Site Identification of Early Böttger Red Stoneware Using Portable Xrf/Raman Instruments: 2, Glaze & Gilding Analysis. Journal of the American Ceramic Society, vol. 98, no. 10, 2015, pp. 3006–3013. https://doi.org/10.1111/jace.13720Search in Google Scholar
Rix, H., Emmitt, S. Issues of authenticity when conserving historic imitative crafts. Journal of Architectural Conservation, vol. 1, no. 19, 2022, pp. 1355–6207. https://doi.org/10.1080/13556207.2022.2066389Search in Google Scholar
Blessley, K., Young, C., Nunn, J., Coddington, J., Shepard, S. The Feasibility of Flash Thermography for the Examination and Conservation of Works of Art. Studies in Conservation, vol. 55, no. 2, 2010, pp. 107–120. https://doi.org/10.1179/sic.2010.55.2.107Search in Google Scholar
Leone, G., De Vita, A., Consumi, M., Tamasi, G., Bonechi, C., Donati, A., Rossi, C., Magnani, A. Comparison of Original and Modern Mortars at the Herculaneum Archaeological Site. Conservation and Management of Archaeological Sites, vol. 21, no. 2, 2019, pp. 92–112. https://doi.org/10.1080/13505033.2019.1638139Search in Google Scholar
Sandak, J., Sandak, A., Riggio, M. Characterization and Monitoring of Surface Weathering on Exposed Timber Structures with a MultiSensor Approach. International Journal of Architectural Heritage, vol. 9, no. 6, 2015, pp. 674–688. https://doi.org/10.1080/15583058.2015.1041190Search in Google Scholar
Kilic, G. Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. Journal of Cultural Heritage, vol. 16, 2015, pp. 526–535. https://doi.org/10.1016/j.culher.2014.09.010Search in Google Scholar
Luziński, R., Ziemkiewicz, J., Synaszko, P., Żyluk, A., Dragan, K. A Comparison of Composite Specimens Damage Area Measurements Performed using Pulsed Thermography and Ultrasonic NDT Methods. Fatigue of Aircraft Structures, vol. 11, 2019, pp. 68–77. https://doi.org/10.2478/fas-2019-0007Search in Google Scholar
Costa, V. S., Silveira, A. M., Torres, A. S. Evaluation of Degradation State of Historic Building Facades through Qualitative and Quantitative Indicators: Case Study in Pelotas, Brazil. International Journal of Architectural Heritage, 2021, pp. 1–24. https://doi.org/10.1080/15583058.2021.1901161Search in Google Scholar
Google Earth Pro [online, cited 15.05.2021]. https://www.google.com/earth/versions/Search in Google Scholar
Kuzucu, K. Osmanlı’dan Cumhuriyete Şehircilik, Mimarî ve Eğitim Anlayışındaki Değişmeler Bağlamında Sivas Kongresi. Ankara Üniversitesi Türk İnkılâp Tarihi Enstitüsü Atatürk Yolu Dergisi, vol. 37–38, 2006, pp. 103–125. https://doi.org/10.1501/Tite_0000000063Search in Google Scholar
Karataş, N. Sivas Mekteb-i İdadisi: Kuruluşu ve Tarihi Gelişimi. Master Thesis, Sivas: SCU Institute of Social Sciences, Department of History, 2021, pp. 28–44.Search in Google Scholar
Kodaman, B. Abdülhamid Devri Eğitim Sistemi. Ankara: Turkish History Association, 1991, pp. 119–123.Search in Google Scholar
Karaman, F. Salname-i Vilayet-i Sivas: Sivas, Amasya, Tokat, Karahisar-ı Şarki (1308/1890). İstanbul: Sivaslilar Education, Culture and Solidarity foundation, 2001. 53 p.Search in Google Scholar
Mutlu, N. Y. Sivas İ’dadisi /Sivas Lisesi (Osmanlı Devletinin 19. ve 20. Asırdaki Eğitim Hamlesi içinde Sivas’ın Yeri ve Sivas Lisesi’nin Başlangıcı ile Sivaslı Bir Öğretmenin Meslek Hayatı). Ankara: 2007, pp. 58–59.Search in Google Scholar
Mert, T. Kongre Günlerinde Sivas Sultanisi. Sultanşehir Kültür Sanat Dergisi, vol. 7 no. 17, summer 2013, pp. 38–45.Search in Google Scholar
Mert, T. Sivas Îdadîsi ve Sivas Sultanîsi‘nden Sivas Lisesine; Arşivde Yeni Bulunan Belgeler Lise’nin Temellerine Işık Tutuyor. Hayat Ağacı, vol. 14, 2009, pp. 43–56.Search in Google Scholar
Selvi, H.Sivas Kongresi: Türkiye Diyanete Vakfı İslam Ansiklopedisi. İstanbul: İSAM, vol. 37, 2009, pp. 284–285. [online, cited 01.08.2022]. https://islamansiklopedisi.org.tr/sivas-kongresiSearch in Google Scholar
Sancaktar, F. M. Determinations About the Delegates of The Sivas Congress (4–11 September 1919). Turkish Journal of History, vol. 71, 2020, pp. 473–496. https://doi.org/10.26650/TurkJHist.2020.022Search in Google Scholar
Duymaz, A. Ş. Osmanlı Modernleşmesinde Sivas’ta Bir Eğitim Kurumu: Sivas İdadisi. Proceedings of the Ottoman Era Sivas Symposium, May 21–25, 2007, Sivas, Turkey, vol. 3, Sivas: Sivas Governorship Publication, 2007, pp. 126–127.Search in Google Scholar
Denizli, H.Tarihi Sivas Kongre Binası Raporu. Unpublished report, KVKBK archive, 1986, pp. 1–2.Search in Google Scholar
Duymaz, A. Ş. ll. Abdülhamid Dönemi imar faaliyetleri (Türkiye örnekleri). Doctoral Thesis, Süleyman Demirel University, Institute of Social Sciences, Department of History, 2003, pp. 139–140.Search in Google Scholar
Özgüven, B. İdadi Binaları. Tarih ve Toplum Dergisi, vol. 82, 1990, pp. 44–47.Search in Google Scholar
Turkmen, K. Osmanlı’da Modern Eğitimin Günümüze Ulaşamayan Bir Temsilcisi: İnşa Süreci ve Mimari Detayları ile Kırşehir Mekteb-i İdadisi. Art-Sanat, vol. 17, 2022, pp. 529–550. https://doi.org/10.26650/artsanat.2022.17.893286Search in Google Scholar
Özçınar, G. A.The Restoration Proposal of Kastamonu Mektebi Idadi Building. Master Thesis, Gazi University Institute of Scıence and Technology, Ankara, Turkey, 2006, pp. 124–136.Search in Google Scholar
Bulut, M.Sivas’taki Geç Dönem Osmanlı Kamu Yapıları. Master Thesis, Selcuk University, Institute of social sciences, Department of art history, Konya, Turkey, 2006. 197 p.Search in Google Scholar
Wikipedia, Sivas Lisesi, 2022 [online, cited 31.08.2022]. https://tr.wikipedia.org/wiki/Dosya:Sivas_Lisesi.jpg#/media/Dosya:Sivas_Lisesi.jpg.Search in Google Scholar
Saltresearch, Front facade of Sivas High School, 2022 [online]. Saltresearch [cited 31.08.2022]. https://archives.saltresearch.org/handle/123456789/114941?locale=en.Search in Google Scholar
Jenkins, R.X-ray fluorescence spectrometry (2nd edition). New York: Wiley Interscience, 1999. 232 p.Search in Google Scholar
Shackley, M. S. X-Ray Fluorescence (XRF): Applications in Archaeology. In: C. Smith (ed.), Encyclopedia of Global Archaeology, New York: Springer, 2014, pp. 7933–7938. https://doi.org/10.1007/978-1-4419-0465-2_1305Search in Google Scholar
Pecchioni, E., Magrini, D., Cantisani, E., Fratini, F., Garzonio, C. A., Nosengo, C. Santo, A. P., Vettori, S. A Non-Invasive Approach for the Identification of “Red Marbles” from Santa Maria Del Fiore Cathedral (Firenze, Italy). International Journal of Architectural Heritage, vol. 15, no. 3, 2021, pp. 494–504. https://doi.org/10.1080/15583058.2019.1629045Search in Google Scholar
Shackley, M. S., Dillian, C. Thermal and environmental effects on obsidian geochemistry: experimental and archaeological evidence. In: J.M. Loyd, T.M. Origer & D.A. Fredrickson (eds.), The effects of fire and heat on obsidian. Sacramento: Cultural resources publication, anthropology-fire history, U.S. Bureau of Land Management, 2002, pp. 117–134.Search in Google Scholar
Shackley, M. S. An introduction to X-ray fluorescence (XRF) analysis in archaeology. In: M.S. Shackley (ed.), X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer, 2011, pp. 7–44.Search in Google Scholar
Liritzis, I., Zacharias, N. Portable XRF of archaeological artefacts: current research potentials and limitations. In: S. Shackley (ed.), X Ray Flourescence Spectrometry in GeoArchaeology, Natural Sciences in Archaeology Series. North America: Springer 2010, pp. 109–142.Search in Google Scholar
Saverwyns, S., Currie, C., Lamas-Delgado, E. Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchemical Journal, vol. 137, 2018, pp. 139–147. https://doi.org/10.1016/j.microc.2017.10.008.Search in Google Scholar
Donais, M. K., Alrais, M., Konomi, K., George, D., Ramundt, W. H., Smith, E. Energy dispersive X-ray fluorescence spectrometry characterization of wall mortars with principal component analysis: Phasing and ex situ versus in situ sampling. Journal of Cultural Heritage, vol. 43, 2020, pp. 90–97. https://doi.org/10.1016/j.culher.2019.12.007Search in Google Scholar
Trojek, T., Hložek, M. Confocal XRF imaging for determination of arsenic distribution in a sample of historic plaster. Radiation Physics and Chemistry, 2022, 110201. https://doi.org/10.1016/j.radphyschem.2022.110201Search in Google Scholar
T. C. Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü [online]. MGM [cited 30.06.2021]. https://www.mgm.gov.trSearch in Google Scholar
Karaman, K., Erçıkdı, B., Cihangir, F., Kesimal, A. Examining the Schmidt Hammer Methods in Estimation of the Uniaxial Compressive Strength. Türkiye 22. Uluslararası Madencilik Kongresi ve Sergisi, 11–13 Mayıs 2011, Ankara [online, cited 01.08.2022]. https://www.researchgate.net/publication/267781874Search in Google Scholar
Mohammed, D. A., Alshkane, Y. M., Hamaamin, Y. A. Reliability of empirical equations to predict uniaxial compressive strength of rocks using Schmidt hammer. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, vol. 14, no. 4, 2020, pp. 308–319. https://doi.org/10.1080/17499518.2019.1658881Search in Google Scholar
Kong, F., Xue, Y., Qiu, D., Gong, H., Ning, Z. Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones. Construction and Building Materials, vol. 299, 2021, 123941. https://doi.org/10.1016/j.conbuildmat.2021.123941Search in Google Scholar
Vasanelli, E., Colangiuli, D., Calia, A., Sbartaï, Z., Breysse, D. Combining noninvasive techniques for reliable prediction of soft stone strength in historic masonries. Constr. Build. Mater. vol. 146, 2017, pp. 744–754. https://doi.org/10.1016/j.conbuildmat.2017.04.146Search in Google Scholar
Sy´kora, M., Diamantidis, D., Holicky´, M., Marková, J., Rózsás, Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Construction and Building Materials, vol. 193, 2018, pp. 196–210. https://doi.org/10.1016/j.conbuildmat.2018.10.180Search in Google Scholar
Parsajoo, M., Armaghani, D. J., Mohammed, S. A., Khari, M., Jahandari, S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transportation Geotechnics, vol. 31, 2021, 100652. https://doi.org/10.1016/j.trgeo.2021.100652Search in Google Scholar
Poblet, J., Bulnes, M., Uzkeda, H., Magán, M. Using the Schmidt hammer on folds: An example from the Cantabrian Zone (NW Iberian Peninsula). Journal of Structural Geology, vol. 155, 2022, 104512. https://doi.org/10.1016/j.jsg.2022.104512Search in Google Scholar
Schmidt, E. A non-destructive concrete tester. Concrete, vol. 59, no. 8, 1951, pp. 34–35.Search in Google Scholar
Deere, D. U., Miller, P. R.Engineeeing Classification and Index Proporties For Intact Rock. Technical Report No. Afwl-Tr-65-116, New Mexico: Air Force Weapons Laboratory Research and Technology Division, 1966. 300 p.Search in Google Scholar
Clifton, J. R.Nondestructive Tests to Determine Concrete Strength – A Status Report. Washington: National Bureau of Standards, 1975. 42 p.Search in Google Scholar
De Beer, J. H. Subjective classification of the hardness of rocks and the associated shear strength. Proceedings of 4th reg. cong. Afr. soil mechanical found engineering, Cape Town, 1967, pp. 396–398.Search in Google Scholar
Selby, M. J. A r ock m ass s trength c lassification f or geomorphic purposes: with test from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 1980, vol. 24, pp. 31–51.Search in Google Scholar
ISRM. Rock characterization, testing and monitoring: ISRM suggested methods. In: E.T. Brown (ed.). Oxford: Pergamon Press, 1981, 211 p.Search in Google Scholar
Waltham, T.Foundations of Engineering Geology, 3nd Press, London and New York: Spon Press Taylor & Francis, 2009. 49 p.Search in Google Scholar
Saptono, S., Kramadibrata, S., Sulistianto, B. Using the Schmidt Hammer on Rock Mass Characteristic in Sedimentary Rock at Tutupan Coal Mine. Procedia Earth and Planetary Science. vol. 6, 2013, pp. 390–395. https://doi.org/10.1016/j.proeps.2013.01.051Search in Google Scholar
Atkinson, R. H. Hardness Tests for Rock Characterization. In: J.A. Hudson (ed.), Comprehensive Rock Engineering, vol. 3: Rock testing and site characterization – Principles, practise and projects, Oxford: Pergamon Press, 1993, p. 107.Search in Google Scholar
Kumral, M., Şans, G., Yalçın, C., Kaya, M., Budakoğlu, M. The Effects of Physical And Chemical Properties On The Formation Of Historical Kufeki Stone In Catalca (Istanbul). Omer Halisdemir University Journal of Engineering Sciences, vol. 8, no. 1, 2019, pp. 278–287.Search in Google Scholar
Sert, M., Gürsoy, M., Arsoy, Z. Determination of Relations Between CaO, MgO and SiO2 Contents and Knoop Hardness Values of Natural Stones. Kafkas University Institute of Natural and Applied Science Journal, vol. 10, no. 2, 2017, pp. 162–171.Search in Google Scholar
Çobanoğlu, İ., Koralay, T., Kaya, A., Çelik, S. B. Investigation the Usability of Limestone Blocks in Karatepe Melange (Kaklık-Denizli) In Production of Concrete Aggregate. 6th İnternational Aggregate Symposium. Sivas, Turkey, October 6–7, 2011, pp. 215–223.Search in Google Scholar
Elçi, H., Türk, N., İşintek, İ. İzmir Karaburun Yarımadasındaki Farklı Kireçtaşlarının Beton Agregası Olarak Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, vol. 38, no. 2, 2014, pp. 103–134.Search in Google Scholar
Yılmaz, F., Koltka, S. ve Sabah, E. Emirdağ-Adaçal (Afyonkarahisar) Kireçtaşlarının Beton Agregaları Standardına Uygunluğunun Araştırılması. AKU-J. Sci. vol. 11, 2011, p. 015801 (1–12).Search in Google Scholar
Gözübol, A. M., Aysal, N. Cebeciköy Kireçtaşı Ocaklarında Litolojik ve Yapısal Kökenli İşletme Sınırları. İstanbul Yerbilimleri Dergisi, vol. 21, no. 1, 2008, pp. 25–35.Search in Google Scholar
Evcin, A., Ersoy, B., Uygunoğlu, T., Güneş, İ. The effect of different mineral additives on non-wettability and surface energy of epoxy floor coating. Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, 2018, pp. 581–590. https://doi.org/10.17341/gazimmfd.416368Search in Google Scholar
Atılgan, İ. Investigation of The Effect of Particle Size of Limestone Added to Lignite on Emission Behaviour in A Fluidized Bed Combustion System. G.U. Journal of Science, vol. 17, no. 4, 2004, pp. 89–101.Search in Google Scholar
Gökay, K. M. Doğal Ortamda Bozuşmanın Kayaç Rengine Etkisi. Madencilik, vol. 42, no. 1, 2003, pp. 35–41.Search in Google Scholar
Akyol, A. A, Kadıoğlu, Y. K., Demirci, Ş. Archaeometrical Studies on Wall Paintings of Zeugma (Gaziantep) Ancient Siteabstract. Anadolu University Journal of Science and Technology –A Applied Sciences and Engineering, vol. 12, no. 1, 2011, pp. 37–56.Search in Google Scholar
Hofmann, M., Ragué Schleyer, P. Acid Rain: Ab Initio Investigation of the H2OSO3 Complex and Its Conversion into H2SO4. J. Am. Chem. Soc. vol. 116, 1994, pp. 4947–4952. https://doi.org/10.1021/ja00090a045Search in Google Scholar
Fleig, D., Andersson, K., Normann, F., Johnsson, F. SO3 Formation under Oxyfuel Combustion Conditions. Ind. Eng. Chem. Res., 50, 2011, pp. 8505–8514. https://doi.org/10.1021/ie2005274Search in Google Scholar
La Russa, M. F., Fermo, P., Comite, V., Belfiore, C. M., Barca, D., Cerioni, A., De Santis, M., Barbagallo, F. L., Ricca, M., Ruffolo, S. A. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Science of The Total Environment, vol. 593–594, 2017, pp. 297–309. https://doi.org/10.1016/j.scitotenv.2017.03.185Search in Google Scholar
Belfiore, C. M., Barca, D., Bonazza, A., Comite, V., La Russa, M. F., Pezzino, A., Ruffolo, S. A., Sabbioni, C. Application of spectrometric analysis to the identification of pollution sources causing cultural heritage damage. Environ Sci Pollut Res, vol. 20, 2013, pp. 8848–8859. https://doi.org/10.1007/s11356-013-1810-ySearch in Google Scholar
Camuffo, D., Del Monte, M. Sabbioni, C. Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil Pollut., vol. 19, 1983, pp. 351–359. https://doi.org/10.1016/j.ibiod.2020.105031Search in Google Scholar
Beadman, K., Scarrow, J. Laser Cleaning Lincoln Cathedral’s Romanesque Frieze. Journal of Architectural Conservation, vol. 4, no. 2, 1998, pp. 39–53. https://doi.org/10.1080/13556207.1998.10785215Search in Google Scholar
Ruffolo, S. A., Comite, V., La Russa, M. F., Belfiore, C. M., Barca, D., Bonazza, A., Crisci, G.M., Pezzino, A., Sabbioni, C. An analysis of the black crusts from the Seville Cathedral: A challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Science of The Total Environment, vol. 502, 2015, pp. 157–166, https://doi.org/10.1016/j.scitotenv.2014.09.023Search in Google Scholar
Comite, V., Ricca, M., Ruffolo, A. S., Graziano, F. S., Rovella, N., Rispoli, C., Gallo, C., Randazzo, L., Barca, D., Cappelletti, P., La Russa, M. F. Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Appl. Sci. vol. 10, no. 12, 2020, p. 4241. https://doi.org/10.3390/app10124241Search in Google Scholar
Andreolli, M., Lampis, S., Bernardi, P., Calò, S., Vallini, G. Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone. International Biodeterioration & Biodegradation, vol. 153, 2020. 105031. https://doi.org/10.1016/j.ibiod.2020.105031Search in Google Scholar
Ortega-Morales, B. O., Gaylarde, C. C. Bioconservation of Historic Stone Buildings—An Updated Review. Applied Sciences. vol. 11, no. 12, 2021, p. 5695. https://doi.org/10.3390/app11125695Search in Google Scholar
Comite, V., Miani, A., Ricca, M., La Russa, M., Pulimeno, M., Fermo, P. The impact of atmospheric pollution on outdoor cultural heritage: an analytic methodology for the characterization of the carbonaceous fraction in black crusts present on stone surfaces. Environmental Research, vol. 201, 2021, 111565. https://doi.org/10.1016/j.envres.2021.111565Search in Google Scholar
Álvarez, F. F., Rodrýìguez, M. T., Espinosa, F. A. J., Dabán, A. G. Physical speciation of arsenic, mercury, lead, cadmium and nickel in inhalable atmospheric particles. Analytica Chimica Acta, vol. 524, no. 1–2, 2004, pp. 33–40. https://doi.org/10.1016/j.aca.2004.02.004Search in Google Scholar
Councell, T. B., Duckenfield, K. U., Landa, E. R., Callender, E. Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology, vol. 38, 2004, pp. 4206–4214. https://doi.org/10.1021/es034631fSearch in Google Scholar
Geiger, A., Cooper, J. Overview of Airborne Metals Regulations, Exposure Limits, Health Effects, and Contemporary Research. Portland: Cooper Environmental Services. 2010. 56 p.Search in Google Scholar
Morajkar, P. P., Abdrabou, M. K., Raj, A., Elkadi, M., Stephen, S., Ali, M. I. Transmission of trace metals from fuels to soot particles: An ICP-MS and soot nanostructural disorder study using diesel and diesel/Karanja biodiesel blend. Fuel, vol. 280, 2020, 118631. https://doi.org/10.1016/j.fuel.2020.118631Search in Google Scholar
Sumner, P., Nel, W. The effect of moisture on schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa. Earth Surf. Proc. Landforms, vol. 27, 2002, pp. 1137–1142. https://doi.org/10.1002/esp.402Search in Google Scholar
Standard test method for determination of rock hardness by rebound hammer method. ASTM 5873-05, 2019. 6 p.Search in Google Scholar
The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. In: R. Ulusay (ed.), Ankara: Kozan Offset Press, 2015. 306 p.Search in Google Scholar
Matthews, J.A., Winkler, S., Wilson, P. Age and origin of ice-cored moraines In Jotunheimen and Breheimen, Southern Norway: insights from Schmidt-Hammer exposure-age dating. Geografiska Annaler: Series A, Physical Geography, vol. 96, 2014, pp. 531–548. https://doi.org/10.1111/geoa.12046Search in Google Scholar
Engineering geology field manual. U.S. Department of the Interior Bureau of Reclamation, Washington: US Government Printing Office, Second edition, vol. 1, 1998. 450 p.Search in Google Scholar
Katz, O., Rechesa, Z., Roegiersc, J. C. Evaluation of mechanical rock properties using a Schmidt hammer. Int. J. Rock. Mech. Min. Sci. vol. 37, no. 4, 2000, pp. 723–728. https://doi.org/10.1016/S1365-1609(00)00004-6Search in Google Scholar
Kahraman, S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock. Mech. Min. Sci., vol. 38, no. 7, 2001, pp. 981–994. https://doi.org/10.1016/S1365-1609(01)00039-9Search in Google Scholar
Fener, M., Kahraman, S., Bilgil, A., Gunaydin, O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock. Mech. Rock. Eng. vol. 38, no. 4, 2005, pp. 329–343. https://doi.org/10.1007/s00603-005-0061-8Search in Google Scholar
Kılıç, A., Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. vol. 67, 2008, pp. 237–244. https://doi.org/10.1007/s10064-008-0128-3Search in Google Scholar
Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. vol. 68, no. 1, 2009, pp. 55–63. https://doi.org/10.1007/s10064-008-0172-zSearch in Google Scholar
China NsotPsRo. Standard for engineering classification of rock masses (GB50218-94). Beijing: China Planning Press, 1995 [online, cited 01.08.2022]. https://www.codeofchina.com/standard/GB50218-1994.htmlSearch in Google Scholar
Wang, H ., L in, H ., C ao, P. Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification. Rock. Mech. Rock. Eng., vol. 50, 2017, pp. 195–203. https://doi.org/10.1007/s00603-016-1044-7Search in Google Scholar
Teymen, A. Estimation of uniaxial compressive strength of very low-medium abrasive rocks from Cerchar abrasiveness index. Pamukkale Univ Muh Bilim Dergi, vol. 26, no. 6, 2020, pp. 1154–1163.Search in Google Scholar
Erözmen, T., Ündül, Ö., Aysal, N. Evaluation for the effects of different cleaning techniques applied on Küfeki Stones Used in historical buildings in İstanbul. Pamukkale University Journal of Engineering Sciences, vol. 26, no. 8, 2020, pp. 1413–1418.Search in Google Scholar
Şahin G üçhan, N ., Bilecen, K ., Warscheid, T., Topal, T., Son, Ç., Çıplak, E. S., Ersöz, T., Kaya, Y., Öztürk, M.Tarihi Kireçtaşlarını Koruma Müdahalelerinde Uygulamak Üzere Kalsit Üreten Bakterilerle Biyolojik Harç Geliştirilmesi. Master Thesis, Program Kodu: 1001, Proje No: 115M188, Middle East Technical University, Ankara, Turkey, 2019. 110 p. [online, cited 01.08.2022]. file:///C:/Users/AK00478/Downloads/TWpBek9UZzQ.pdfSearch in Google Scholar
Ünal, M., Beyaz, T. Hasankeyf Kireçtaşlarının Suda Dağılmaya ve Tuz Kristalleşmesine Karşı Direncinin Araştırılması. Engineering Sciences, vol. 14, no. 2, 2019, pp. 55–62.Search in Google Scholar
Şahin, M.Nokta Yükü Dayanım İndeksinin Yarılanmış Karot Örneklerinden Belirlenebilirliğinin Araştırılması. Master Thesis, Hacettepe University, Department of Geological Engineering, 2018. 42 p. [online, cited 01.08.2022]. http://www.openaccess.hacettepe.edu.tr:8080/xmlui/bitstream/handle/11655/4489/10189572.pdf?sequence=1&isAllowed=nSearch in Google Scholar
Koç, E., Demir Şahin, D., Yılmaz, A. O. Examination of Indirect Tensile and Point Load Strength on Different Originated Rock Samples Taken Between Trabzon-Maçka Areas. ROCKMEC’2014-XI th Regional Rock Mechanics Symposium, Afyonkarahisar, Turkey, May 7–9, 2014 [online, cited 01.08.2022]. http://www.rocknet-japan.org/events-announcement/419/Search in Google Scholar
Karaman, K., Kesimal, A. Kayaçların Tek Eksenli Basınç Dayanımı Tahmininde Nokta Yükü Deney Yöntemleri ve Porozitenin Değerlendirilmesi. Madencilik, vol. 51, no. 4, 2012, pp. 3–14.Search in Google Scholar
Dipova, N. Investigation of the Relationships Between Abrasiveness and Strength Properties of Weak Limestones Along a Tunnel Route. Jeoloji Mühendisliği Dergisi, vol. 36, no. 1, 2012, pp. 23–34.Search in Google Scholar
Tüysüz, L.İstanbul’da Açılacak Metro Tünellerinde Tbm (Tünel Açma Makinesi) Performansını Tahmin Etmek İçin Yeni Bir Yaklaşım. Master Thesis, Istanbul Technical University, Graduate School of Natural and Applied Sciences, Department of Mining Engineering, 2012. 19 p.Search in Google Scholar
Karaman, K., Kesimal, A. Evaluation of the Relationship between Uniaxial Compressive Strength and Ultrasonic Pulse Velocity of Rocks. Journal of Underground Resources, vol. 2, no. 4, 2013, pp. 9–17.Search in Google Scholar
Ocak, İ. Tek Eksenli Basınç Dayanımını Kullanarak Kaya Malzemesinin Elastisite Modülünün Tahmini. İstanbul Yerbilimleri Dergisi, vol. 21, no. 2, 2008, pp. 91–97.Search in Google Scholar