1. bookVolumen 25 (2021): Heft 2 (December 2021)
30 Jul 2013
2 Hefte pro Jahr
Uneingeschränkter Zugang

The influence of meteorological conditions during traditional smoking on polycyclic aromatic hydrocarbon content in traditional Polish pork ham

Online veröffentlicht: 30 Dec 2021
Volumen & Heft: Volumen 25 (2021) - Heft 2 (December 2021)
Seitenbereich: 243 - 252
Eingereicht: 02 Mar 2021
Akzeptiert: 15 Sep 2021
30 Jul 2013
2 Hefte pro Jahr

The aim of the study was to examine the influence of meteorological conditions observed during the process of traditional smoking on polycyclic aromatic hydrocarbon content in traditional Polish pork ham. The material of the study comprised traditional Polish pork ham, one of the most frequently purchased and consumed meat products in Poland. The analysed ham was smoked with the traditional method using beech chips and pieces. Smoking time was four hours. During laboratory research the basic chemical composition of the product was examined. Using the HPLC method, the level of 15 selected Polycyclic Aromatic Hydrocarbons (PAHs). The obtained results show that the level of selected polycyclic aromatic hydrocarbons in the examined material depended on atmospheric pressure and relative air humidity. Atmospheric pressure significantly influenced the content of benzo(b)fluoranthene, benzo(a)anthracene and indeno(c,d)pyrene. Relative humidity impacted the absorption level of 5-methylchrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene and indeno(c,d)pyrene. An influence of air temperature during the smoking process on PAHs content in the product was not observed. The results indicate that traditional smoking should be conducted under conditions of high relative humidity – ideally above 75%, and high atmospheric pressure – above 1000 hPa.

1. Alomirah, H., Al-Zenki S., Al-Hooti S., Zaghloul S., Sawaya W., Ahmed N. & Kannan K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22, 2028–2035. doi: 10.1016/j.foodcont.2011. Search in Google Scholar

2. Alomirah, H., Al-Zenki S., Husain A., Sawaya W., Ahmed N., Gevao B. & Kannan K. (2010). Benzo[a]pyrene and total polycyclic aromatic hydrocarbons (PAHs) levels in vegetable oils and fats do not reflect the occurrence of the eight genotoxic PAHs. Food Additives and Contaminants 27, 869–878. doi: 10.1080 /19440040903493793.10.1080/1944004090349379320104381 Search in Google Scholar

3. Arias, A.H., Vazquez-Botello A., Tombesi N., Ponce-Vélez G., Freije H. & Marcovecchio J. (2010). Presence distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary. Argentina Environmental Monitoring and Assessment 160, 301–314. doi: 10.1007/s10661-008-0696-510.1007/s10661-008-0696-519085065 Search in Google Scholar

4. Bagnowska, A., Mostowski R., Trzęsowska A. & Krala L. (2011). Techniczne, technologiczne i zdrowotne aspekty wędzenia mięsa [Technical, technological and health safety aspects smoking of meat]. Acta Scientarum Technica Agraria 10 (1-2), 33–40. Search in Google Scholar

5. Choroszy, K. & Tereszkiewicz K. (2020). Polycyclic aromatic hydrocarbon content in sausage smoked using a polish traditional method. Afr. J. Food Agric. Nutr. Dev. 20(4), 16143-16160.10.18697/ajfand.92.18225 Search in Google Scholar

6. Djinovic, J., Popovic A. & Jira W. (2008). Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Science 80 (2), 449–456. doi: 10.1016/j.meatsci.2008.01.00810.1016/j.meatsci.2008.01.00822063352 Search in Google Scholar

7. Dobosz, M. (2010). Wspomagana komputerowo statystyczna analiza wyników badań. Warszawa: Akademicka Oficyna Wydawnicza EXIT. Search in Google Scholar

8. Ekomy, A. S., Bruneau D., Mbega D. J. & Aregba W. (2013). Nouveau concept de séchage et de fumage artisanal des aliments: Application en milieu de pêche artisanale au Gabon. Afrique Science, 9(3), 45–55. Search in Google Scholar

9. Fasano, E., Yerba-Pimentel I. & Martinez-Carballo E. (2016). Proofing, distribution and levels of carcinogenic polycyclic aromatic hydrocarbons in traditional smoked plant and animal foods. Food Control, 59, 581–590. https://doi.org/10.1016/j.foodcont.2015. Search in Google Scholar

10. Ghasemzadeh-Mohammadi, V., Mohammadi A., Hashemi M., Khaksar R. & Haratian P. (2012). Microvawe-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. Journal of Chromatography. A, 1237, 30–36. DOI: 10.1016/j.chroma.2012.02.07810.1016/j.chroma.2012.02.07822483095 Search in Google Scholar

11. Guillen, M.D. & Sopelana P. (1997). Polycyclic aromatic hydrocarbons in diverse foods reviews on. Journal of Environmental Health, 12, 133–145. DOI: 10.1515/reveh.1997.12.3.13310.1515/REVEH.1997.12.3.1339406285 Search in Google Scholar

12. Guillen M.D., Sopelana P. & Partearroyo M.A. (2000b). Determination of polycyclic aromatic hydrocarbons in commercial liquid smoke flavourings of different compositions by gas chromatography – mass spectrometry. Journal of Agricultural and Food Chemistry. 48, 126–31. doi.org/10.1021/jf9908998.10.1021/jf990899810691604 Search in Google Scholar

13. Jira W. (2004). AGC-MS method for the determination of carcinogenic polycycic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. Eur. Food Research and Technology. 218, 208–212.10.1007/s00217-003-0827-8 Search in Google Scholar

14. Guo, W., He M., Yang Z., Lin C., Quan X. & Men B. (2009). Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dryseason. China Journal of Hazard Materials, 164, 1379–1385. doi:10.1016/j.jhazmat.2008.09.08310.1016/j.jhazmat.2008.09.08318980804 Search in Google Scholar

15. Hitzel, A., Pöhlmann M., Schwägele F., Speer K. & Jira W. (2012). Polycyclic Aromatic Hydrocarbons (PAH) and phenolic substances in cold smoked sausages depending on smoking conditions using smoldering smoke. Journal of Food Research, 1, 14–19.10.5539/jfr.v1n2p45 Search in Google Scholar

16. Kołakowski, et al. (2012). Technologia wędzenia żywności. Warszawa: PWRiL. Search in Google Scholar

17. Ledesma, E., Rendueles M. & Díaz M. (2014). Benzo(a)pyrene penetration on a smoked meat product during smoking time. Food Additives and Contaminants, A, 31 (10), 1688–1698.10.1080/19440049.2014.94987525078362 Search in Google Scholar

18. Ledesma, E., Rendueles M. & Díaz M. (2015). Spanish smoked meat products: Benzo(a)pyrene (BaP) contamination and moisture. Journal of Food Composition and Analysis, 37, 87–94. DOI: 10.1016/j.jfca.2014. Search in Google Scholar

19. Ledesma, E., Rendueles M. & Díaz M. (2017). Smoked food. Current Developments in Biotechnology and Bioengineering, 1, 201–243.10.1016/B978-0-444-63666-9.00008-X Search in Google Scholar

20. Lee, J.-G., Kim S.-Y., Moon J.-S., Kim S.-H. & Kang D.-H. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632–638. doi.org/10.1016/j.foodchem.2015. Search in Google Scholar

21. Leroy, F., Geyzen A., Janssens M., De Vuyst L. & Scholliers P. (2013). Meat fermentation at the crossroads of innovation and tradition: a historical outlook. Trends in Food Science and Technology, 31 (2), 130–137. doi: 10.1016/j.tifs.2013. Search in Google Scholar

22. Li, X. (2016). Metal food packaging design based on hazard analysis critical control point (HACCP) system in canned food safety. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 93-104. doi.org/10.1515/aucft-2016-000810.1515/aucft-2016-0008 Search in Google Scholar

23. Li, J., Dong H., Han B., Zhu Ch. & Zhang D. (2016). Quantitatively assessing the health risk of exposure to PAHs from intake of smoked meats. Ecotoxicology and Environmental Safety, 124, 91–95.10.1016/j.ecoenv.2015.10.00726476877 Search in Google Scholar

24. Migdał, W. (2015). Sterowanie jakością produktów pochodzenia zwierzęcego. [Management of the quality of products of animal origin]. Przegląd Hodowlany, 5, 1–8. Search in Google Scholar

25. Mynarski S. (2003). Analiza danych rynkowych i marketingowych z wykorzystaniem programu Statistica. Kraków: Wyd. AE. Search in Google Scholar

26. McMurry J. (2005). Chemia organiczna. T. 4. Warszawa: PWN. Search in Google Scholar

27. Norinaga K., Janardhanan V. M. & Deutschmann O. (2008). Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073–1373 K with a plug-flow reactor model. International Journal of Chemical Kinetics, 40, 199–208. doi.org/10.1002/kin.20302.10.1002/kin.20302 Search in Google Scholar

28. Parol, J., Pietrzak-Fiećko R. & Smoczyński S. (2014). Wielopierścieniowe węglowodory aromatyczne (WWA) w wędzonym pstrągu tęczowym (Oncrhynchus Mykiss) [Polycyclic aromatic hydrocarbons (PAHs) in smoked rainbow trout (Oncorhynchus Mykiss)]. Żywność. Nauka. Technologia. Jakość, 6(97), 125–137. doi: 10.15193/zntj/2014/97/125-13710.15193/zntj/2014/97/125-137 Search in Google Scholar

29. Pöhlmann, M., Hitzel A., Schwägele F., Speer K. & Jira W. (2012). Contens of polycyclic aromatic hydrocarbons (PAH) and phenolic substances in Frakfurter-type sausages depending on smoking conditions using glow smoke. Meat Science, 90(1), 176–84. doi: 10.1016/j.meatsci.2011. Search in Google Scholar

30. Pongpiachan, S. (2015). A preliminary study of using polycyclic aromatic hydro-carbons as chemical tracers for traceability in soybean products. Food Control, 47, 392–400. doi.org/10.1016/j.foodcont.2014. Search in Google Scholar

31. Rey-Salgueiro, L., Martínez-Carballo E., García-Falcón M.S., González-Barreiro C. & Simal-Gándara J. (2009b). Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. Food Chemistry, 115, 814–819.10.1016/j.foodchem.2008.12.095 Search in Google Scholar

32. Rey-Salgueiro, L., Martínez-Carballo E., García-Falcón M.S. & Simal-Gándara, J. (2009a). Survey of polycyclic aromatic hydrocarbons in canned bivalves and investigation of their potential sources. Food Research International, 42, 983–988.10.1016/j.foodres.2009.04.003 Search in Google Scholar

33. Rey-Salgueiro, L., García-Falcón M. S., Martínez-Carballo E., González-Barreiro C. & Simal-Gándara J. (2008a). The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo[a]pyrene in animal husbandry. The Science of the Total Environment, 406(1–2), 279–286. https://doi.org/10.1016/j.scitotenv.2008. Search in Google Scholar

34. Rey-Salgueiro, L., Martínez-Carballo E., García-Falcón M. S. & Jesús Simal-Gándara J. (2008b). Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chemistry, 108(1), 347–353. https://doi.org/10.1016/j.foodchem.2007. Search in Google Scholar

35. Rose, M., Holland J., Dowding A., Petch S., White S., Fernandes A. & Mortimer D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1–9. doi: 10.1016/j.fct.2014. Search in Google Scholar

36. Rozentāle, I., Stumpe-Viksna I., Začs D., Siksna I. & Melngaile A. (2015). Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control, 54, 16–22. doi.org/10.1016/j.foodcont.2015. Search in Google Scholar

37. Sapota, A. (2002). Wielopierścieniowe węglowodory aromatyczne (substancje smołowe rozpuszczalne w cykloheksanie) [Polycyclic aromatic hydrocarbons]. Podstawy i Metody Oceny Środowiska Pracy, 2(32), 179–208. Search in Google Scholar

38. Shrestha, B., Anderson T.A., Acosta-Martinez V., Payton P. & Cañas-Carrell J.E. (2015).The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicology and Environmental Safety, 116, 143–149. doi: 10.1016/j.ecoenv.2015. Search in Google Scholar

39. Šimko, P. (2005). Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Molecular Nutrition and Food Research, 49(7), 639–647. doi: 10.1002/mnfr.200400091.10.1002/mnfr.20040009115945119 Search in Google Scholar

40. Škaljac, S. Petrović L., Tasić T., Ikonić P., Jokanović M., Tomović V., Džinić N., Šojić B., Tjapkin A. & Škrbić B. (2013). Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages from Serbia. Food Control, 40, 12–18. doi.org/10.1016/j.foodcont.2013. Search in Google Scholar

41. Stumpe-Viksna, I., Bartkevics V., Kukare A. & Morozovs A. (2008). Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chemistry, 110(3), 794–797. doi.org/10.1016/j.foodchem.2008.03.00410.1016/j.foodchem.2008.03.004 Search in Google Scholar

42. Singh, L., Varshney J. G. & T. Agarwal. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199(2016), 768–781. doi.org/10.1016/j.foodchem.2015.12.074 Search in Google Scholar

43. Yebra-Pimentel, I., Fernández-González R., Carballo E.M. & Simal-Gándara J. (2012). Searching ingredients polluted by polycyclic aromatic hydrocarbons in feeds due to atmospheric or pyrolytic sources. Food Chemistry, 135(3), 2043–2051.10.1016/j.foodchem.2012.06.06922953956 Search in Google Scholar

44. Yebra-Pimentel, I., Fernández-González R., Martínez-Carballo E. & Simal-Gándara J. (2014). Optimization of purification processes to remove polycyclic aromatic hydrocarbons(PAHs) in pollute draw fish oils. Science of the Total Environment, 470-471C, 917–924. doi: 10.1016 /j.scitotenv.2013.10.06110.1016/j.scitotenv.2013.10.06124231673 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo