1. bookVolumen 9 (2022): Heft 3 (November 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2603-347X
Erstveröffentlichung
15 Dec 2015
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Comparative analysis of the myriapod fauna (Diplopoda, Chilopoda) of the Shumen Plateau and the Madara Plateau (Northeastern Bulgaria)

Online veröffentlicht: 01 Nov 2022
Volumen & Heft: Volumen 9 (2022) - Heft 3 (November 2022)
Seitenbereich: 36 - 50
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2603-347X
Erstveröffentlichung
15 Dec 2015
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch

1. Vasileva-Tcankova, R. Str. Global Ecological Problems of Modern Society, Acta Scientifica Naturalis, 2022, 9(2), 63–86.10.2478/asn-2022-0014 Search in Google Scholar

2. Fauth, J.E.; Bernardo, J.; Camara, M.; Resetarits, W.J.; Van Buskirk, J.; Mccollum, S.A. Simplifying the jargon of community ecology: A conceptual approach. Am Nat, 1996, 147, 282–286. Search in Google Scholar

3. Peters, M.K.; Hempa, A.; Steffan-Dewenter, I. Predictors of elevational biodiversity gradients change fromsingle taxa to the multi-taxa community level. Nat Commun, 2016, 7, 13736.10.1038/ncomms13736519216628004657 Search in Google Scholar

4. Thom, D.; Rammer, W.; Dirnböck, T.; Mûller, J.; Kobler, J.; Katzensteiner, K.; Helm, N.; Seidl, R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape, JAppl Ecol, 2017, 54, 28–38. Search in Google Scholar

5. Bowler, D.E, Haase, P.; Böhning-Gaese, K. A cross-taxon analysis of the impact of climate change on abundance trends in central Europe, Biol Conserv, 2015, 187, 41–50. Search in Google Scholar

6. Bowler, D.E., Hof, C.; Böhning-Gaese, K. Cross-realm assessment of climate change impacts on species’abundance trends, Nat Ecol Evol, 2017, 1, 67.10.1038/s41559-016-006728812743 Search in Google Scholar

7. Korhonen, J.J.; Soininen, J.; Hillebrand, H. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems, Ecology, 2010, 91, 508–517. Search in Google Scholar

8. De’Ath, G., The multinomial diversity model: Linking Shannon diversity to mul-tiple predictors. Ecology, 2012, 93, 2286–2296.10.1890/11-2155.123185889 Search in Google Scholar

9. Bachvarova, D., Myriapoda (Chilopoda, Diplopoda) of Shumen City and Shumen Plateau (NEBulgaria): Taxonomic Structure and Zoogeographical Analysis. Acta Zoologica Bulgarica, 2011, 63(3), 245–262. Search in Google Scholar

10. Bachvarova, D.; Doychinov, A.; Deltchev, Ch.; Stoev, P. Habitat distribution of myriapods (Chilopoda, Diplopoda) in the town of Shumen and the Shumen Plateau (NE Bulgaria), Arthropoda Selecta, 2015, 24(2), 169–184.10.15298/arthsel.24.2.02 Search in Google Scholar

11. Doychinov, Al.; Bachvarova, D. Contribution to the research on Myriapoda (Chilopoda, Diplopoda) in the Madara Plateau, Shumen region, North-Eastern Bulgaria, Proceedings of the Seminar of Ecology - 2014 with international participation: Institute of Biodiversity and Ecosystem Research, BAS - Sofia, Bulgaria, 2014, 27–36. Search in Google Scholar

12. Ninov, N.; Soils. In: Geography of Bulgaria, Sofia, ForKom, 2002 (in Bulgarian). Search in Google Scholar

13. Asenov, A. Biogeography and natural capital of Bulgaria, Sofia: UI “Sveti Kliment Ohridski”. 2021, 939 p. (in Bulgarian). Search in Google Scholar

14. Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shent, J. Abundance-based similarity indices and their estimation when there are unseen species in samples, Biometrics, 2006, 62(2), 361–371.10.1111/j.1541-0420.2005.00489.x16918900 Search in Google Scholar

15. Krebs, C.J., Ecological Methodology, 3rd ed., 2014, https://www.zoology.ubc.ca/~krebs/books.html Search in Google Scholar

16. Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shent, J. A new statistical approach for assessing compositional similarity based on incidence and abundance data, Ecology Letters, 2005, 8, 148–159. Search in Google Scholar

17. Hill, M.O. Diversity and Evenness: A Uni-fying Notation and Its Consequences, Ecology, 1973, 54(2), 427–432.10.2307/1934352 Search in Google Scholar

18. Jost, L. Entropy and diversity, Oikos, 2006, 113(2), 363–375.10.1111/j.2006.0030-1299.14714.x Search in Google Scholar

19. Magurran, A.Е.; Deacon, А.E.; Moyes, F.; Shimadzu, Н.; Dornelas, М.; Philliip, D.A.T.; Ramnarine, I.W. Divergent biodiversity change within ecosystems, PNAS, 2018, 115(8), 1843-1847. https://doi.org/10.1073/pnas.171259411510.1073/pnas.1712594115582858229440416 Search in Google Scholar

20. Schwartz, M.W.; Thorne, J.H.; Viers, J.H. Biotic homogenization of the California flora in urban and urbanizing regions, Biol Conserv, 2006, 127, 282–291. Search in Google Scholar

21. Lizėe, M.H.; Mauffrey, J.F.; Tatoni, T.; Deschamps-Cottin, M. Monitoring urban environments on the basis of biological traits, Ecol Indic, 2011, 11, 353–361. Search in Google Scholar

22. Knop, E. Biotic homogenization of three insect groups due to urbanization, Glob Chang Biol, 2016, 22, 228–236.10.1111/gcb.1309126367396 Search in Google Scholar

23. Van Rensburg, B.J.; Peacock, D.S.; Robertson, M.P. Biotic homogenization and alien bird species along an urban gradient in South Africa, Landsc Urban Plan, 2009, 92, 233–241. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo