Uneingeschränkter Zugang

Analysis of the physico-chemical characteristics and content of selected bioactive components in lamb meat, depending on the type of muscle and vacum-aging time


Zitieren

Abdullah A.Y., Qudsieh R.I. (2009). Effect of slaughter weight and aging time on the quality of meat from Awassi ram lamb. Meat Sci., 82: 309–316. Search in Google Scholar

Ablikim B., Liu Y., Kerim A., Ping S., Abdurerim P., Zhou G.H. (2016). Effect of breed, muscle type and frozen storage on physico-chemical characteristics of lamb meat and its relationship with tenderness. CyTA – J. Food, 14: 109–116. Search in Google Scholar

Aristoy M.C., Toldrá F. (1998). Concentration of free amino acids and dipeptides in porcine skeletal muscles with different oxidative patterns. Meat Sci., 50: 327–332. Search in Google Scholar

Bekhit A.E.D., Hopkins D.L., Fahri F.T., Ponnampalam E.N. (2013). Oxidative processes in muscle systems and fresh meat: Sources, markers, and remedies. Compr. Rev. Food Sci. F., 12: 565–597. Search in Google Scholar

Bischof G., Witte F., Terjung N., Januschewski E., Heinz V., Juadjur A., Gibis M. (2023). NMR based comparison of the metabolome of beef from Simmental and black and white young bulls during wet and dry aging. Eur. Food Res. Technol., https://doi.org/10.1007/s00217-023-04283-0 Search in Google Scholar

Choi M.J., Abduzukhurov T., Park D.H., Kim E.J., Hong G.P. (2018). Effects of deep freezing temperature for long-term storage on quality characteristics and freshness of lamb meat. Korean J. Food Sci. Anim. Res., 38: 959–969. Search in Google Scholar

Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing (Text with EEA relevance) OJ L 303, 18.11.2009, p. 1–30. Search in Google Scholar

Decker E., Park Y. (2010). Healthier meat products as functional foods. Meat Sci., 86: 49–55. Search in Google Scholar

Devine C.E., Graafhuis A.E., Muir P.D., Chrystall B.B. (1993). The effect of growth rate and ultimate pH on meat quality of lambs. Meat Sci., 35: 63–77. Search in Google Scholar

Dou L., Jin Y., Li H., Liu C., Yang Z., Chen X., Sun L., Zhao L., Su L. (2023). Effect of feeding system on muscle fiber composition, antioxidant capacity, and nutritional and organoleptic traits of goat meat. Animals, 13: 172. Search in Google Scholar

Esenbuga N., Macit M., Karaoglu M., Aksakal V., Aksu M.I., Yoruk M.A., Gul M. (2009). Effect of breed on fattening performance, slaughter and meat quality characteristics of Awassi and Morkaraman lambs. Livest. Sci., 123: 255–260. Search in Google Scholar

Folch J., Lees M., Stanley S.G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509. Search in Google Scholar

Gramatina I., Krasnobajs R., Skudra L., Sazonova S. (2019). Changes of physical parameters of meat during wet ageing. FOODBALT 2019. Proc. 13th Baltic Conference on Food Science and Technology “Food. Nutrition. Well-being”, Jelgava, Latvia, pp. 61–65. Search in Google Scholar

Grau R., Hamm R. (1953). Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel, Naturwiss, 40: 29–30. Search in Google Scholar

Gürbüz Ü., Kahraman H.A., Telli A.E., Biçer Y., Doğruer Y. (2022). Comparison of meat quality characteristics of dry aged lamb loins and optimization of dry aging process. Vet. Res. Forum, 13: 21–27. Search in Google Scholar

Hill C.A., Harris R.C., Kim H.J., Harris B.D., Sale C., Boobis L.H., Kim C.K., Wise J.A. (2007). Infuence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32: 225–233. Search in Google Scholar

Hipkiss A.R., Gaunitz F. (2014). Inhibition of tumour cell growth by carnosine: some possible mechanisms. Amino Acids, 46: 327–337. Search in Google Scholar

Hopkins D.L., Lamb T.A., Kerr M.J., Nande Ven R.J., Ponnampalam E.N. (2013). Examination of the effect of ageing and temperature at rigor on colour stability of lamb meat. Meat Sci., 95: 311–316. Search in Google Scholar

Huang C., Hou Ch., Ijaz M., Yan T., Li X., Li Y., Zhang D. (2020). Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci Technol., 105: 416–432. Search in Google Scholar

Ithurralde J., Bianchi G., Feed O., Nan F., Garibotto G., Bielli A. (2015). Histochemical fiber types in 16 heavy-lamb skeletal muscles. Small Rum. Res., 125: 88–92. Search in Google Scholar

Ito T., Schafer S., Azuma J. (2014). The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids, 46: 111–119. Search in Google Scholar

Joo S.T., Kim G.D., Hwang Y.H., Ryu Y.C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci., 95: 828–836. Search in Google Scholar

Joo S.H., Lee K.W., Hwang Y.H., Joo S.T. (2017). Histochemical characteristics in relation to meat quality traits of eight major muscles from hanwoo steers. Korean J. Food Sci. Anim. Res., 37: 716–725. Search in Google Scholar

Janovska A., Hatzinikolas G., Mano M., Wittert G.A. (2010). The effect of diatery fat content on phospholipid fatty acid profile is muscle fiber type depend. AJP – Endo, 298: 779–786. Search in Google Scholar

Jung S., Bae Y.S., Yong H. I., Lee H.J., Seo D.W., Park H.B., Lee J.H., Jo C. (2015). Proximate composition, and l-carnitine and betaine contents in meat from Korean indigenous chicken. Asian-Australas. J. Anim. Sci., 28: 1760–1766. Search in Google Scholar

Kapase G., Kulkarni S., Mohan K., Kalmath P.G., Math S.K. (2021). Biochemical and physicochemical characteristics in different skeletal muscles of sheep hind limb. Asian J. Dairy Food Res., 40: 371–375. Search in Google Scholar

Kim H.C., Baek K.H., Ko Y.-J. Lee H.J., Yim D.-G., Jo C. (2020). Characteristic metabolic changes of the crust from dry-aged beef using 2D NMR spectroscopy. Molecules, 25: 3087. Search in Google Scholar

Kim Y.H.B., Kemp R., Samuelsson L.M. (2016). Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci., 111: 168–76. Search in Google Scholar

Komatsu T., Shoji N., Saito K., Suzuki K. (2014). Effects of genetic and environmental factors on muscle glycogen content in Japanese Black cattle. Anim. Sci. J., 85: 793–798. Search in Google Scholar

Krupińnski J., Borys B., Kieć W., Knapik J., Korman K., Osikowski M., Pompa- Roborzyński M., Rzepecki R. (2009). Assessment of the utility lambs meat against the requirements and methods used in the European Union. Institute of Animal Production, Cracow, Poland, 32 pp. Search in Google Scholar

Lee S.H., Joo S.T., Ryu Y.C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci., 86: 166–170. Search in Google Scholar

Listrat A., Lebret B., Louveau I., Astruc T. Bonnet M., Lefaucheu L., Picard B., Bugeon J. (2016). How muscle structure and composition influence meat and flesh quality. Sci. World J., 3182746. Search in Google Scholar

Luca A.D., Hamill R.M., Mullen A.M., Slavov N., Elia G. (2016). Comparative proteomic profiling of divergent phenotypes for water holding capacity across the post mortem ageing period in porcine muscle exudate. PloS One, 11(30), e0150605. Search in Google Scholar

Luciano G., Moloney A.P., Priolo A., Röhrle F.T., Vasta V., Biondi L., López-Andrés P., Grasso S., Monahan F.J. (2011). Vitamin E and polyunsaturated fatty acids in bovine muscle and the oxidative stability of beef from cattle receiving grass or concentrate-based rations. J. Anim. Sci., 89: 3759–3768. Search in Google Scholar

Mancini R.A. Hunt M.C. (2005). Current research in meat color. Meat Sci., 71: 100–121. Search in Google Scholar

Martín A., Giráldez F.J., Cremonesi P., Castiglioni B., Biscarini F., Ceciliani F., Santos N., Andrés S. (2022). Dietary administration of L-carnitine during the fattening period of early feed restricted lambs modifies ruminal fermentation but does not improve feed efficiency. Front Physiol., 13: 840065. Search in Google Scholar

Martinez-Cerezo S., Sanudo C., Panea B., Medel I., Delfa R., Sierra I., Beltrain J.A., Cepero R., Olleta J.L. (2005). Breed, slaughter weight and ageing time effect on physico-chemical characteristics of lamb meat. Meat Sci., 69: 325–333. Search in Google Scholar

Nowak M. (2005). The role of calpains in the process of meat tenderization (in Polish). Food. Sci. Technol. Qual., 42: 5–17. Search in Google Scholar

Osikowski M., Porębska W., Korman K. (1998). Feeding standards for sheep, In: Standards for feeding cattle and sheep in the traditional system (in Polish). Institute of Animal Production, Cracow, Poland, pp. 29–57. Search in Google Scholar

Peraza-Mercado G., Jaramillo-Lopez E., Alarcon-Rojo A.D. (2010). Breed effect upon carcass characteristics and meat quality of Pelibuey and Polypy x Rambouillet lambs, Am. Eurasian. J. Agr. Environ. Sci., 8: 508–513. Search in Google Scholar

Picard B., Lefaucheur L., Berri C., Duclos M. (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev., 42: 415–431. Search in Google Scholar

Ponnampalam E.N., Plozza T., Kerr M.G., Linden N., Mitchell M., Bekhit A., Jacobs J., Hopkins D.L. (2017). Interaction of diet and long ageing period on lipid oxidation and colour stability of lamb meat. Meat Sci., 129: 42–49. Search in Google Scholar

Purchas R.W., Rutherfurd S.M., Pearce P.D., Vather R., Wilkinson B.H.P. (2004). Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci., 66: 629–637. Search in Google Scholar

Purchas R.W., Zou M. (2008). Composition and quality differences between the longissimus and infraspinatus for several group of pasture-finished cattle. Meat Sci., 80: 470–479. Search in Google Scholar

Radzik-Rant A., Rant W., Sosnowiec G., Świątek M., Niżnikowski R., Szymańska Ż. (2020). The effect of genotype and muscle type on the physico-chemical characteristics and taurine, carnosine and L-carnitine concentration in lamb meat. Arch. Anim. Breed., 63: 423–430. Search in Google Scholar

Rant W., Radzik-Rant A., Świątek M., Niżnikowski R., Szymańska Ż., Bednarczyk M., Orłowski E., Morales-Villavicencio A., Ślęzak M. (2019). The effect of aging and muscle type on the quality characteristics and lipid oxidation of lamb meat. Arch. Anim. Breed., 62: 383–391. Search in Google Scholar

Roseiro L.C., Santos C., Gonçalves H., Moniz C., Afonso I., Tavares M., da Ponte D.J.B. (2014). Concentration of antioxidants in two muscles of mature dairy cows from Azores. Meat Sci., 96: 870–875. Search in Google Scholar

Ruiz D.J.F., Gonzalez L., Bispo E., Rodrigez P., Garabal J.I., Moreno T. (2010). Study of hydrolyzed protein composition, free amino acid and taurine content in different muscles of Galician Blonde beef. J. Muscle Foods, 21: 769–784. Search in Google Scholar

Sale C., Saunders B., Harris R.C. (2010). Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids, 39: 321–333. Search in Google Scholar

Sosin-Bzducha E., Puchała M. (2017). Effect of breed and ageing time on physicochemical and organoleptic quality of beef and its oxidative stability. Arch. Anim. Breed., 60: 191–198. Search in Google Scholar

Sazili A., Parr T., Sensky P., Jones S., Bardsley R., Buttery P. (2005). The relationship between slow and fast myosin heavy chain content, calpastatinand meat tenderness in differentovine skeletal muscles. Meat Sci., 69: 17–25. Search in Google Scholar

Seidel U., Huebbe P., Rimbach G. (2019). Taurine: a regulator of cellular redox-homeostasis and skeletal muscle function. Mol. Nutr. Food Res., 63: 1800569. Search in Google Scholar

Shimada K., Jong C.J., Takahashi K., Schaffer S.W. (2015). Role of ROS production and turnover in the antioxidant activity of taurine. Adv. Exp. Med. Biol., 803: 581–596. Search in Google Scholar

Shimada K., SakumaY., Wakamatsu J., Fukushima M., Sekikawa M., Kuchida K., Mikami M. (2004). Species and muscle differences in L-carnitine levels in skeletal muscles based on a new simple assay. Meat Sci., 68: 357–362. doi:10.1016/j.meatsci.2004.04.003 Search in Google Scholar

SPSS Base 23.0 Users Guide, SPSS Inc. (2016). available at: http://www.public.dhe.ibm.com (last access: 15 January 2020) Search in Google Scholar

Schmid A. (2010). Bioactive substances in meat and meat products. Fleischwirtschaft, 2: 127–133. Search in Google Scholar

Torrecilhas J.A., Vito E.S., Fiorentini G., Castagnino P., Simioni T.A., Lage J.F., Baldi F., Duarte J.M., da Silva L.G., Reis R.A., Berchielli T.T. (2021). Effects of supplementation strategies during the growing phase on meat quality of beef cattle finished in different systems. Livest. Sci., 247: 104465. Search in Google Scholar

Uchiyama M., Mihara M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 86: 271–278. Search in Google Scholar

Warner R. (2016). Meat: Conversion of muscle into meat. In: Encyclopedia of Food and Health, pp. 677–684. Search in Google Scholar

Wu G. (2020). Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids, 52: 329–360. Search in Google Scholar

Yanar M., Yetim H. (2001). The effects of aging period and muscle type on the textural quality characteristics of mutton. Turk. J. Vet. Anim. Sci., 25: 203–207. Search in Google Scholar

Yang A., Lanari M.C., Brewster M., Tume R.K. (2002). Lipid stability and meat colour of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Sci., 60: 41–50. Search in Google Scholar

Yang Z., Liu C., Dou L., Chen X., Zhao L., Su L., Jin Y. (2022). Effects of feeding regimes and postmortem aging on meat quality, fatty acid composition, and volatile flavor of longissimus thoracis muscle in Sunit sheep. Animals, 12: 3081. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin