Uneingeschränkter Zugang

Prospects and application of solid-state fermentation in animal feed production – a review


Zitieren

Acosta-Estrada B.A., Villela-Castrejón J., Perez-Carrillo E., Gómez-Sánchez C.E., Gutiérrez-Uribe J.A. (2019). Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote). J. Cereal Sci., 90: 102837. Search in Google Scholar

Ahmed S.T., Mun H.S., Islam M.M., Ko S.Y., Yang C.J. (2016). Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci., 122: 7–15. Search in Google Scholar

Akinola O.S., Onakomaiya A.O., Agunbiade J.A., Oso A.O. (2015). Growth performance, apparent nutrient digestibility, intestinal morphology and carcass traits of broiler chickens fed dry, wet and fermented-wet feed. Livest. Sci., 177: 103–109. Search in Google Scholar

Akpabli-Tsigbe N.D.K., Osabutey J., Mintah B.K., Tano-Debrah K., Ma Y. (2023). Cleavage of macromolecule (protein/polysaccharide)-phenolic bond in soybean cell wall through Lactobacillus casei and Lactobacillus helviticus mixed culture solid-state fermentation for chlorogenic acid extraction. Food Biosci., 55: 102903. Search in Google Scholar

Al Daccache M., Koubaa M., Maroun R.G., Salameh D., Louka N., Vorobiev E. (2020). Pulsed electric field-assisted fermentation of Hanseniaspora sp. yeast isolated from Lebanese apples. Food Res. Int., 129: 108840. Search in Google Scholar

Alexandratos N., Bruinsma J. (2012). FAO (2012) World Agriculture towards 2030/2050. In ESA Working Papers 12-03. Search in Google Scholar

Arora S., Rani R., Ghosh S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J. Biotech., 269: 16–34. Search in Google Scholar

Ashayerizadeh A., Dastar B., Shargh M.S., Mahoonak A.R.S., Zerehdaran S. (2018). Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci., 216: 183–190. Search in Google Scholar

Babinszky L., Horváth M., Remenyik J., Verstegen M.W.A. (2019). The adverse effects of heat stress on the antioxidant status and performance of pigs and poultry and reducing these effects with nutritional tools. In: Poultry and pig nutrition: Challenges of the 21st century, 8: 471–476. Search in Google Scholar

Betchem G., Dabbour M., Tuly J.A., Billong L.F., Ma H. (2023). Optimization of fermentation conditions to improve the functional and structural characteristics of rapeseed meal with a mutant Bacillus subtilis species. Ind. Crops Pro., 205: 117424. Search in Google Scholar

Betchem G., Dabbour M., Tuly J.A., Lu F., Liu D., Monto A.R., Dusabe K.D., Ma H. (2024). Effect of magnetic field-assisted fermentation on the in vitro protein digestibility and molecular structure of rapeseed meal. J. Sci. Food Agric., https://doi.org/10.1002/jsfa.13269 Search in Google Scholar

Boland M.J., Rae A.N., Vereijken J.M., Meuwissen M.P.M., Fischer A.R.H., van Boekel M.A.J. S., Rutherfurd S.M., Gruppen H., Moughan P.J., Hendriks W.H. (2013). The future supply of animal-derived protein for human consumption. Trends Food Sci. Techn., 29: 62–73. Search in Google Scholar

Borresen E., Henderson A., Kumar A., Weir T., Ryan E. (2012). Fermented foods: patented approaches and formulations for nutritional supplementation and health promotion. Recent Pat. Food Nutr. Agric., 4: 134–140. Search in Google Scholar

Câmara S.P., Dapkevicius A., Riquelme C., Elias R.B., Silva C.C.G., Malcata F.X., Dapkevicius M. (2019). Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Sci. Techn. Int., 25: 303–317. Search in Google Scholar

Canibe N., Jensen B.B. (2012). Fermented liquid feed – microbial and nutritional aspects and impact on enteric diseases in pigs. Ani. Feed Sci. Tech., 173: 17–40. Search in Google Scholar

Cano y Postigo L.O., Jacobo-Velázquez D.A., Guajardo-Flores D., Garcia Amezquita L.E., García-Cayuela T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Biosci., 41: 100926. Search in Google Scholar

Cao X., Luo Z., Zeng W., Xu S., Zhao L., Zhou J. (2018). Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. App. Micro. Biotech., 102: 703–712. Search in Google Scholar

Carboué Q., Rébufa C., Hamrouni R., Roussos S., Bombarda I. (2020). Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Biopro. Biosys. Eng., 43: 2283–2294. Search in Google Scholar

Castillo Y., Ruiz Barrera O., Burrola-Barraza M.E., Arzola-Alvarez C., Corral-Luna A., Rodriguez-Muela C., Murillo-Ortiz M. (2015). Inclusion levels of fermented apple bagasse on in vitro rumen fermentation of alfalfa hay. J. Agric. Sci. Techn. A, 5: 40–46. Search in Google Scholar

Chebaibi S., Leriche Grandchamp M., Burgé G., Clément T., Allais F., Laziri F. (2019). Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed. J. Biosci. Bioeng., 128: 384–390. Search in Google Scholar

Cheng Y.H., Hsiao F.S.H., Wen C.M., Wu C.Y., Dybus A., Yu Y.H. (2019). Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers. J. Appl. Animal Res., 47: 339–348. Search in Google Scholar

Cheng Y.H., Su L.W., Horng Y.B., Yu Y.H. (2019). Effects of soybean meal fermented by species and on growth performance, diarrhea incidence, and fecal bacteria in weaning piglets. Ann. Anim. Sci., 19: 1051–1062. Search in Google Scholar

Cuadra T., Fernández F.J., Tomasini A., Barrios-González J. (2008). Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Let. Appl. Micro., 46: 216–220. Search in Google Scholar

Cui Y., Li J., Dun D., Huijie L., Tian Z., Liu Z., Ma X. (2021). Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. PLoS One, 16: e0260045. Search in Google Scholar

Czech A., Grela E.R., Kiesz M. (2021). Dietary fermented rapeseed or/and soybean meal additives on performance and intestinal health of piglets. Sci. Rep., 11: 16952. Search in Google Scholar

Czech A., Wlazło Ł., Łukaszewicz M., Florek M., Nowakowicz-Dębek B. (2023). Fermented rapeseed meal enhances the digestibility of protein and macro- and microminerals and improves the performance of weaner pigs. Ani. Feed Sci. Techn., 300: 115656. Search in Google Scholar

Das K.C., Mohanty S., Sahoo P.K., Sahoo S., Prakash B., Swain P. (2022). Inclusion of different levels of solid-state fermented mahua oil cake on growth, digestibility and immunological parameters of rohu (Labeo rohita). Aquaculture, 553: 738049. Search in Google Scholar

Deamici K.M., Santos L.O., Costa J.A.V. (2018). Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile. Biores. Techn., 249: 168–174. Search in Google Scholar

Drażbo A., Kozłowski K., Ognik K., Zaworska A., Jankowski J. (2019). The effect of raw and fermented rapeseed cake on growth performance, carcass traits, and breast meat quality in turkey. Poultry Sci., 98: 6161–6169. Search in Google Scholar

Dumandan N.G., Arreola S.L.B. (2022). Enhanced production of l-lysine by Bacillus megaterium AECR 751 mutant in copra meal through solid-state fermentation. Biores. Tech. Rep., 20: 101270. Search in Google Scholar

El Salamony D.H., Salah Eldin Hassouna M., Zaghloul T.I., Moustafa Abdallah H. (2024). Valorization of chicken feather waste using recombinant Bacillus subtilis cells by solid-state fermentation for soluble proteins and serine alkaline protease production. Biores. Tech., 393: 130110. Search in Google Scholar

Elbaz A.M., El-sheikh S.E., Abdel‑Maksoud A. (2023). Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Trop. Ani. Health Prod., 55: 46. Search in Google Scholar

Farinas C.S. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sust. Energy Rev., 52: 179–188. Search in Google Scholar

Feizi L.K., Zad S.S., Jalali S.A.H., Rafiee H., Jazi M.B., Sadeghi K., Kowsar R. (2020). Fermented soybean meal affects the ruminal fermentation and the abundance of selected bacterial species in Holstein calves: a multilevel analysis. Sci. Rep., 10: 12062. Search in Google Scholar

Fessenden S.W., Ross D.A., Block E., Van Amburgh M.E. (2020). Comparison of milk production, intake, and total-tract nutrient digestion in lactating dairy cattle fed diets containing either wheat middlings and urea, commercial fermentation by-product, or rumen-protected soybean meal. J. Dairy Sci., 103: 5090–5101. Search in Google Scholar

Fraga F.C., Valério A., de Oliveira V.A., Di Luccio M., de Oliveira D. (2019). Effect of magnetic field on the Eversa® Transform 2.0 enzyme: Enzymatic activity and structural conformation. Int. J. Biological Macro., 122: 653–658. Search in Google Scholar

Gao J., Zhang H.J., Wu S.G., Yu S.H., Yoon I., Moore D., Gao Y.P., Yan H.J., Qi G. H. (2009). Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeria tenella. Poultry Sci., 88: 2141–2151. Search in Google Scholar

Gao X., Liu E., Yin Y., Yang L., Huang Q., Chen S., Ho C.T. (2020). Enhancing activities of salt-tolerant proteases secreted by Aspergillus oryzae using atmospheric and room-temperature plasma mutagenesis. J. Agric. Food Chem., 68: 2757–2764. Search in Google Scholar

Han T., Wang T., Wang Z., Xiao T., Wang M., Zhang Y., Zhang J., Liu D. (2022). Evaluation of gaseous and solid waste in fermentation bedding system and its impact on animal performance: A study of breeder ducks in winter. Sci. Total Environ., 836: 155672. Search in Google Scholar

Hao L., Su W., Zhang Y., Wang C., Xu B., Jiang Z., Wang F., Wang Y., Lu Z. (2020). Effects of supplementing with fermented mixed feed on the performance and meat quality in finishing pigs. Ani. Feed Sci. Tech., 266: 114501. Search in Google Scholar

Hassaan M.S., Soltan M.A., Abdel-Moez A.M. (2015). Nutritive value of soybean meal after solid-state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Tech., 201: 89–98. Search in Google Scholar

Hendriks A.T.W.M., Zeeman G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Tech., 100: 10–18. Search in Google Scholar

Huang G., Chen S., Tang Y., Dai C., Sun L., Ma H., He R. (2019). Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultra. Sono., 51: 315–324. Search in Google Scholar

Jiang K., Tang B., Wang Q., Xu Z., Sun L., Ma J., Li S., Xu H., Lei P. (2019). The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive. Biores. Tech., 291: 121841. Search in Google Scholar

Jiang X., Liu X., Xu H., Sun Y., Zhang Y., Wang Y. (2021 a). Improvement of the nutritional, antioxidant and bioavailability properties of corn gluten-wheat bran mixture fermented with lactic acid bacteria and acid protease. LWT, 144: 111161. Search in Google Scholar

Jørgensen H., Sholly D., Pedersen A.Ø., Canibe N., Knudsen K.E.B. (2010). Fermentation of cereals — Influence on digestibility of nutrients in growing pigs. Livest. Sci., 134: 56–58. Search in Google Scholar

Kar S., Datta T., Ray R. (2010). Optimization of thermostable alpha- amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue. Braz. Arch. Biol. Tech., 53: 301–309. Search in Google Scholar

Koo B., Kim J.W., Nyachoti C.M. (2018). Nutrient and energy digestibility and microbial metabolites in weaned pigs fed diets containing Lactobacillus-fermented wheat. Ani. Feed Sci. Tech., 241: 27–37. Search in Google Scholar

Krishania M., Sindhu R., Binod P., Ahluwalia V., Kumar V., Sangwan R.S., Pandey A. (2018). Chapter 5 – Design of bioreactors in solid-state fermentation. In: Current developments in biotechnology and bioengineering, Pandey A., Larroche C., Soccol C.R. (eds.). Elsevier, pp. 83–96. Search in Google Scholar

Kumar V., Ahluwalia V., Saran S., Kumar J., Patel A.K., Singhania R.R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Biores. Tech., 323: 124566. Search in Google Scholar

Leite P., Belo I., Salgado J.M. (2021). Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Ind. Crops Prod., 172: 113990. Search in Google Scholar

Leite P., Salgado J.M., Venâncio A., Domínguez J.M., Belo I. (2016). Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Biores. Tech., 214: 737–746. Search in Google Scholar

Li W., Ma H., He R., Ren X., Zhou C. (2021). Prospects and Application of Ultrasound and Magnetic Fields in the Fermentation of Rare Edible Fungi. Ultra. Sono., 76: 105613. Search in Google Scholar

Li W., Wang T. (2021). Effect of solid-state fermentation with Bacillus subtilis lwo on the proteolysis and the antioxidative properties of chickpeas. Int. J. Food Microbiol., 338: 108988. Search in Google Scholar

Li Yang, Guo B., Wu Z., Wang W., Li C., Liu G., Cai H. (2020). Effects of fermented soybean meal supplementation on the growth performance and cecal microbiota community of broiler chickens. Animals, 10: 1098. Search in Google Scholar

Li Y., Ruan S., Zhou A., Xie P., Azam S.M.R., Ma H. (2022). Ultrasonic modification on fermentation characteristics of Bacillus varieties: Impact on protease activity, peptide content and its correlation coefficient. LWT- Food Sci. Tech., 154: 112852. Search in Google Scholar

Lin K.H., Yu Y.H. (2022). A field study of Bacillus licheniformis-fermented products on growth performance and faecal microbiota of weaning piglets. South Afr. J. Anim. Sci., 52: 718–729. Search in Google Scholar

Lin L., Wang X., Cui H. (2019). Synergistic efficacy of pulsed magnetic fields and Litseacubeba essential oil treatment against Escherichia coli O157:H7 in vegetable juices. Food Cont., 106: 106686. Search in Google Scholar

Lin L., Wang X., He R., Cui H. (2019). Action mechanism of pulsed magnetic field against E. coli O157:H7 and its application in vegetable juice. Food Cont., 95: 150–156. Search in Google Scholar

Lin W.C., Lee M.T., Lo C.T., Chang S.C., Lee T.T. (2018). Effects of dietary supplementation of Trichoderma pseudokoningii fermented enzyme powder on growth performance, intestinal morphology, microflora and serum antioxidantive status in broiler chickens. Italian J. Ani. Sci., 17: 153–164. Search in Google Scholar

Liñan-Vidriales M.A., Peña-Rodríguez A., Tovar-Ramírez D., Elizondo-González R., Barajas-Sandoval D.R., Ponce-Gracía E.I., Rodríguez-Jaramillo C., Balcázar J.L., Quiroz-Guzmán E. (2021). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531: 735958. Search in Google Scholar

Lou H., Yang C., Li Y., Li Y., Li Y., Zhao R. (2023). Optimization of aflatoxin B1 degradation in corn by Ganoderma sinense through solid-state fermentation. LWT, 183: 114959. Search in Google Scholar

Lu F., Alenyorege E.A., Ouyang N., Zhou A., Ma H. (2022). Simulated natural and high temperature solid-state fermentation of soybean meal: A comparative study regarding microorganisms, functional properties and structural characteristics. LWT, 159: 113125. Search in Google Scholar

Mai H.T.N., Lee K.M., Choi S.S. (2016). Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochem., 51: 9–15. Search in Google Scholar

Mao Y., Chen Z., Lu L., Jin B., Ma H., Pan Y., Chen T. (2020). Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J. Biotech., 322: 29–32. Search in Google Scholar

Marcinčák S., Klempová T., Bartkovský M., Marcinčáková D., Zdolec N., Popelka P., Mačanga J., Čertík M. (2018). Effect of Fungal Solid-State Fermented Product in Broiler Chicken Nutrition on Quality and Safety of Produced Breast Meat. Bio Med. Res. Int., 2018: 2609548 Search in Google Scholar

Meng L., Gao X., Liu X., Sun M., Yan H., Li A., Yang Y., Bai Z. (2021). Enhancement of heterologous protein production in Corynebacterium glutamicum via atmospheric and room temperature plasma mutagenesis and high-throughput screening. J. Biotech., 339: 22–31. Search in Google Scholar

Mirsalami S.M., Mirsalami M. (2024). Impact of solid-state fermentation utilizing Saccharomyces boulardii on the chemical composition and bioactive constituents of rice husk. J. Agric. Food Res., 15: 100957. Search in Google Scholar

Montanari C., Tylewicz U., Tabanelli G., Berardinelli A., Rocculi P., Ragni L., Gardini F. (2019). Heat-Assisted Pulsed Electric Field Treatment for the Inactivation of Saccharomyces cerevisiae: Effects of the Presence of Citral. Front. Microbiol., 10: 1737. Search in Google Scholar

Moore K.J., Jung H.J.G. (2001). Lignin and fiber digestion. J. Range Man., 54: 420–430. Search in Google Scholar

Mota M.J., Lopes R.P., Koubaa M., Roohinejad S., Barba F.J., Delgadillo I., Saraiva J.A. (2018). Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies. Crit. Rev. Biotech., 38: 122–140. Search in Google Scholar

Muangkeow N., Chinajariyawong C. (2013). Diets containing fermented palm kernel meal with Aspergillus wentii TISTR 3075 on growth performance and nutrient digestibility of broiler chickens. Walailak J. Sci. Tech., 10: 131–147. Search in Google Scholar

Muniyappan M., Shanmugam S., Park J.H., Han K., Kim I.H. (2023). Effects of fermented soybean meal supplementation on the growth performance and apparent total tract digestibility by modulating the gut microbiome of weaned piglets. Sci. Rep., 13: 3691. Search in Google Scholar

Nguyen T., Lapoin W., Young M., Nguyen C.H. (2022). Changes in Fermented Soybean Nutritional Content Generated Under the Different Fermentation Conditions by Bacillus Subtilis. Waste Biom. Val., 13: 563–569. Search in Google Scholar

Nigam P. (1990). Investigation of some factors important for solid-state fermentation of sugar cane bagasse for animal feed production. Enz. Microbial Tech., 12: 808–811. Search in Google Scholar

Noblet J., Henry Y. (1993). Energy evaluation systems for pig diets: a review. Livest. Prod. Sci., 36: 121–141. Search in Google Scholar

Olukomaiya O.O., Pan L., Zhang D., Mereddy R., Sultanbawa Y., Li X. (2021). Performance and ileal amino acid digestibility in broilers fed diets containing solid-state fermented and enzyme-supplemented canola meals. Ani. Feed Sci. Tech., 275: 114876. Search in Google Scholar

Ong A., Lee C.L.K. (2021). Cooperative metabolism in mixed culture solid-state fermentation. LWT, 152: 112300. Search in Google Scholar

Ottenheim C., Nawrath M., Wu J.C. (2018). Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Biores. Biopro., 5: 12. Search in Google Scholar

Prado Barragán L.A., Figueroa J.J.B., Rodríguez Durán L.V., Aguilar González C.N., Hennigs C. (2016). Chapter 7 - Fermentative Production Methods. In: Biotransformation of agricultural waste and by-products, Poltronieri P., D’Urso O.F. (eds.). Elsevier, pp. 189–217. Search in Google Scholar

Qureshi A.S., Khushk I., Ali C.H., Chisti Y., Ahmad A., Majeed H. (2016). Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatalysis Agric. Biotech., 8: 146–151. Search in Google Scholar

Rahimnejad S., Zhang J.J., Wang L., Sun Y., Zhang C. (2021). Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture, 531: 735975. Search in Google Scholar

Rana M., Kumar D., Angural S., Warmoota R., Mazumder K., Gupta N. (2023). Hyperproduction of a bacterial mannanase and its application for production of bioactive mannooligosaccharides from agro-waste. Process Biochem., 124: 13–23. Search in Google Scholar

Rayaroth A., Tomar R.S., Mishra R.K. (2021). One step selection strategy for optimization of media to enhance arachidonic acid production under solid state fermentation. LWT, 152: 112366. Search in Google Scholar

Rui X., Wang M., Zhang Y., Chen X., Li L., Liu Y., Dong M. (2017). Optimization of soy solid-state fermentation with selected lactic acid bacteria and the effect on the anti-nutritional components. J. Food Pro. Pre., 41: e13290. Search in Google Scholar

Ruijter G., Visser J., Rinzema A. (2004). Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. Microbiol. (Reading, England), 150: 1095–1101. Search in Google Scholar

Salim A.A., Grbavčić S., Šekuljica N., Vukašinović-Sekulić M., Jovanović J., Jakovetić Tanasković S., Luković N., Knežević-Jugović Z. (2019). Enzyme production by solid-state fermentation on soybean meal: A comparative study of conventional and ultrasound-assisted extraction methods. Biotech. App. Biochem., 66: 361–368. Search in Google Scholar

Shao J., Wang B., Liu M., Jiang K., Wang L., Wang M. (2019). Replacement of fishmeal by fermented soybean meal could enhance the growth performance but not significantly influence the intestinal microbiota of white shrimp Litopenaeus vannamei. Aquaculture, 504: 354–360. Search in Google Scholar

Sharawy Z., Goda A.M.A.S., Hassaan M.S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Ani. Feed Sci. Tech., 212: 90–99. Search in Google Scholar

Shi C Zhang Y., Yin Y., Wang C., Lu Z., Wang F., Feng J., Wang Y. (2017). Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs. J. Anim. Sci., 95: 3996–4004. Search in Google Scholar

Shi C., He J., Wang J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016 a). Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim. Sci. J., 87: 557–563. Search in Google Scholar

Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016 b). Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal. PLoS One, 11: e0153230. Search in Google Scholar

Shi Changyou Zhang Y., Lu Z., Wang Y. (2017). Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotech., 8: 50. Search in Google Scholar

Shiu Y.L., Hsieh S.L., Guei W.C., Tsai Y.T., Chiu C.H., Liu C.H. (2015). Using Bacillus subtilis E20-fermented soybean meal as replacement for fish meal in the diet of orange-spotted grouper (Epinephelus coioides, Hamilton). Aquac. Res., 46: 1403–1416. Search in Google Scholar

Shu L., Si X., Yang X., Ma W., Sun J., Zhang J., Xue X., De-pei W., Gao Q. (2020). Enhancement of acid protease activity of Aspergillus oryzae using atmospheric and room temperature plasma. Front. Microbiol., 11: 1418. Search in Google Scholar

Singh R.S., Chauhan K., Kaur K., Pandey A. (2020). Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Biores. Tech. Rep., 9: 100364. Search in Google Scholar

Sosa-Martínez J.D., Montañez J., Contreras-Esquivel J.C., Balagurusamy N., Gadi S.K., Morales-Oyervides L. (2023). Agroindustrial and food processing residues valorization for solid-state fermentation processes: A case for optimizing the co-production of hydrolytic enzymes. J. Environ. Man., 347: 119067. Search in Google Scholar

Sugiharto S., Turrini Y., Isroli I., Endang W., Hanny Indrat W.T.A., Sartono. (2018). The effect of fungi-origin probiotic Chrysonilia crassa in comparison to selected commercially used feed additives on broiler chicken performance, intestinal microbiology, and blood indices. J. Adv. Vet. Anim. Res., 5: 332–342. Search in Google Scholar

Sun X., Dou Z., Shurson G.C., Hu B. (2024). Bioprocessing to upcycle agro-industrial and food wastes into high-nutritional value animal feed for sustainable food and agriculture systems. Res. Conserv. Recycling, 201: 107325. Search in Google Scholar

Sun X., Urriola P.E., Shurson G., Tiffany D., Hu B. (2023). Enhancing feeding value of corn distiller’s grains with solubles via fungal co-cultured solid-state fermentation for monogastric animal nutrition. Ani. Feed Sci. Tech., 303: 115673. Search in Google Scholar

Szyjka S.J., Mandal S., Schoepp N.G., Tyler B.M., Yohn C.B., Poon Y.S., Villareal S., Burkart M.D., Shurin J.B., Mayfield S.P. (2017). Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res., 24: 378–386. Search in Google Scholar

Tian Z., Deng D., Cui Y., Chen W., Yu M., Ma X. (2020). Diet supplemented with fermented okara improved growth performance, meat quality, and amino acid profiles in growing pigs. Food Sci. Nutri., 8: 5650–5659. Search in Google Scholar

Tuly J.A., Ma H., Zabed H.M., Dong Y., Chen G., Guo L., Betchem G., Igbokwe C.J. (2022). Exploring magnetic field treatment into solid-state fermentation of organic waste for improving structural and physiological properties of keratin peptides. Food Biosci., 49: 101872. Search in Google Scholar

Tuly J.A., Zabed H.M., Nizami A.S., Mehedi Hassan M., Roknul Azam S.M., Kumar Awasthi M., Janet Q., Chen G., Akpabli-Tsigbe N.D.K., Ma H. (2022). Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation. Biores. Tech., 346: 126513. Search in Google Scholar

Tuyen D.V., Phuong H.N., Cone J.W., Baars J.J.P., Sonnenberg A.S.M., Hendriks W.H. (2013). Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Biores. Tech., 129: 256–263. Search in Google Scholar

Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. (2015). Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotech. Adv., 33: 191–202. Search in Google Scholar

Vandenberghe L.P.S., Pandey A., Carvalho J.C., Letti L.A.J., Woiciechowski A.L., Karp S.G., Thomaz-Soccol V., Martínez-Burgos W.J., Penha R.O., Herrmann L.W., Rodrigues A.O., Soccol, C.R. (2020). Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Sys. Micro. Biomanufacturing, 1: 142–165. Search in Google Scholar

Vong W.C., Hua X.Y., Liu S.Q. (2018). Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT, 90: 316–322. Search in Google Scholar

Wang C., Lin C., Su W., Zhang Y., Wang F., Wang Y., Shi C., Lu Z. (2018). Effects of supplementing sow diets with fermented corn and soybean meal mixed feed during lactation on the performance of sows and progeny. J. Anim. Sci., 96: 206–214. Search in Google Scholar

Wang J., Cao F., Su E., Zhao L., Qin W. (2018). Improvement of animal feed additives of ginkgo leaves through solid-state fermentation using Aspergillus niger. Int. J. Biol. Sci., 14: 736–747. Search in Google Scholar

Wang M.S., Wang L.H., Bekhit A.E.D.A., Yang J., Hou Z.P., Wang Y.Z., Dai Q.Z., Zeng X.A. (2018). A review of sublethal effects of pulsed electric field on cells in food processing. J. Food Eng., 223: 32–41. Search in Google Scholar

Wang Yan Li J., Wei F., Liu X., Yi C., Zhang Y. (2019). Improvement of the nutritional value, sensory properties and bioavailability of rapeseed meal fermented with mixed microorganisms. LWT, 112: 108238. Search in Google Scholar

Wang Yucheng Xu K., Lu F., Wang Y., Ouyang N., Ma H. (2021). Increasing peptide yield of soybean meal solid-state fermentation of ultrasound-treated Bacillus amyloliquefaciens. Innov. Food Sci. Emer. Tech., 72: 102704. Search in Google Scholar

Xu B., Zhu L., Fu J., Li Z., Wang Y., Jin M. (2019). Overall assessment of fermented feed for pigs: a series of meta-analyses. J. Anim. Sci., 97: 4810–4821. Search in Google Scholar

Xu C., Liu W., Zhang D., Liu J., Zheng X., Zhang C., Yao J., Zhu C., Chi C. (2020). Effects of partial fish meal replacement with two fermented soybean meals on the growth of and protein metabolism in the Chinese mitten crab (Eriocheir sinensis). Aquac. Rep., 17: 100328. Search in Google Scholar

Yan H., Jin J.Q., Yang P., Yu B., He J., Mao X.B., Yu J., Chen D.W. (2022). Fermented soybean meal increases nutrient digestibility via the improvement of intestinal function, anti-oxidative capacity and immune function of weaned pigs. Animals, 16: 100557. Search in Google Scholar

Yang L., Zeng X., Qiao S. (2021). Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr., 7: 905–916. Search in Google Scholar

Yao K.Y., Wei Z.H., Xie Y.Y., Wang D.M., Liu H.Y., Fang D., Ma M.R., Liu J.X. (2020). Lactation performance and nitrogen utilization of dairy cows on diets including unfermented or fermented yellow wine lees mix. Livest. Sci., 236: 104025. Search in Google Scholar

Yin J., Kim H.S., Kim Y.M., Kim I.H. (2018). Effects of dietary fermented red ginseng marc and red ginseng extract on growth performance, nutrient digestibility, blood profile, fecal microbial, and noxious gas emission in weanling pigs. J. Appl. Anim. Res., 46: 1084–1089. Search in Google Scholar

Yongwei W., Qingqing D., Dang S., Weiwei W., Hang Z., Li W., Aike L. (2017). Effects of fermented cottonseed meal on growth performance, serum biochemical parameters, immune functions, antioxidative abilities, and cecal microflora in broilers. Food Agric. Immunol., 28: 725-738. Search in Google Scholar

Yuan L., Chang J., Yin Q., Lu M., Di Y., Wang P., Wang Z., Wang E., Lu F. (2017). Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim. Nutr., 3: 19–24. Search in Google Scholar

Zhai S.S., Zhou T., Li M.M., Zhu Y.W., Li M.C., Feng P.S., Zhang X.F., Ye H., Wang W.C., Yang L. (2019). Fermentation of flaxseed cake increases its nutritional value and utilization in ducklings. Poultry Sci., 98: 5636–5647. Search in Google Scholar

Zhang A.R., Wei M., Yan L., Zhou G.L., Li Y., Wang H.M., Yang Y.Y., Yin W., Guo J.Q., Cai X.H., Li J.X., Zhou H., Liang Y.X. (2022). Effects of feeding solid-state fermented wheat bran on growth performance and nutrient digestibility in broiler chickens. Poultry Sci., 101: 101402. Search in Google Scholar

Zhang C., Qin J., Dai Y., Mu W., Zhang T. (2019). Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. J. Biotech., 296: 7–13. Search in Google Scholar

Zhang D., Ye Y., Tan B. (2022). Comparative study of solid-state fermentation with different microbial strains on the bioactive compounds and microstructure of brown rice. Food Chem., 397: 133735. Search in Google Scholar

Zhao H.M., Guo X.N., Zhu K.X. (2017). Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem., 217: 28–36. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin