Uneingeschränkter Zugang

Influence of various methods of processing soybeans on protein digestibility and reduction of nitrogen deposits in the natural environment – a review


Zitieren

Abdel-Mageed H.M., Barakat A.Z., Bassuiny R.I., Elsayed A.M., Salah H.A., Abdel-Aty A.M., Mohamed S.A. (2021). Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation. Folia Microbiol., 67: 253–264. Search in Google Scholar

Abdel-Raheem S.M., Mohammed E.S.Y., Mahmoud R.E., El Gamal M.F., Nada H.S., El-Ghareeb W.R., Marzok M., Meligy A., Abdulmohsen M., Ismail H., Ibrahim D. (2023). Double-fermented soybean meal totally replaces soybean meal in broiler rations with favorable impact on performance, digestibility, amino acids transporters and meat nutritional value. Animals, 13: 1030. Search in Google Scholar

Abdollahi M.R., Wiltafsky-Martin M., Zaefarian F., Ravindran V. (2022). Influence of conditioning and expansion characteristics on the apparent metabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers. Animals, 12: 1021. Search in Google Scholar

Abdollahi M.R., Wiltafsky-Martin M., Zaefarian F., Ravindran V. (2022). Metabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers are influenced by wet-heating, expansion temperature, and autoclaving time. Poultry Sci., 101: 102016. Search in Google Scholar

Aderibigbe A., Cowieson A.J., Sorbara J.O., Pappenberger G., Adeola O. (2020). Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a mono component protease. Poultry Sci., 99: 5007–5017. Search in Google Scholar

Ahiwe E.U., Omede A.A., Abdallh M.B., Iji P.A. (2018). Managing dietary energy intake by broiler chickens to reduce production costs and improve product quality. Anim. Husb. Nutr., 115: 115–145. Search in Google Scholar

Amornthewaphat N., Lerdsuwan S., Attamangkune S. (2005). Effect of extrusion of corn and feed form on feed quality and growth performance of poultry in a tropical environment. Poultry Sci., 84: 1640–1647. Search in Google Scholar

Angel C.R., Saylor W., Vieira S.L., Ward N. (2011). Effects of a mono component protease on performance and protein utilization in 7-to 22-day-old broiler chickens. Poultry Sci., 90: 2281–2286. Search in Google Scholar

Applegarth A., Furuta F., Lepkovsky S. (1964 a). Response of the chicken pancreas to raw soybeans: morphologic responses, gross and microscopic, of the pancreases of chickens on raw and heated soybean diets. Poultry Sci., 43: 733–739. Search in Google Scholar

Appleoarth A., Furuta F., Lepkovsky S. (1964 b). Response of the chicken pancreas to raw soybeans: morphologic responses, gross and microscopic, of the pancreases of chickens on raw and heated soybean diets. Poultry Sci., 43: 733–739. Search in Google Scholar

Applegate T.J., Angel R. (2014). Nutrient requirements of poultry publication: History and need for an update. JAPR, 23: 567–575. Search in Google Scholar

Araba M., Dale N.M. (1990 a). Evaluation of protein solubility as an indicator of overprocessing soybean meal. Poultry Sci., 69: 76–83. Search in Google Scholar

Ari M.M. (2014). Nutrient composition, amino acids profile and anti nutritional factors of nixtamalized soya bean (Glycine max) using different alkali treatment. PAT, 10: 28–37. Search in Google Scholar

Ari M.M., Ayanwale B.A., Ogah D.M. (2013). Effects of alkali treatment of soyabean on carcass traits intestinal morphology and cooking yield of broilers. Trakia. J. Sci., 2: 189–96. Search in Google Scholar

Ari M.M., Ayanwale B.A., Adama T.Z., Olatunji E.A. (2013). Performance traits, nutrient utilization and cost implication of feeding different thermally treated soyabeans to broiler chickens. Niger. J. Anim. Sci., 15: 71–82. Search in Google Scholar

Ari M.M., Ayanwale B.A., Adama T.Z. (2017). Evaluation of different processing methods of soya beans (Glycine max) on its nutritive value and the performance of broilers: A qualitative selection approach for extension. Int. J. Livest. Prod., 8: 113–124. Search in Google Scholar

Ari M.M., Ayanwale, B.A., Adama, T.Z., Olatunji E.A. (2012). Effects of diets containing alkali-treated Soybeans on performance traits, nutrient digestibility and cost benefits of broiler chickens. Niger. J. Anim. Prod., 39: 125–134. Search in Google Scholar

Asghar M.U., Rahman A., Hayat Z., Rafique M.K., Badar I.H., Yar M.K., Ijaz M. (2021). Exploration of Zingiber officinale effects on growth performance, immunity, and gut morphology in broilers. Braz. J. Biol., 83: e250296. Search in Google Scholar

Ayanwale B.A. (1999). Performance and carcass characteristics of broiler chickens fed sodium sesquicarbonate processec soyabean diets. Niger. J. Anim. Sci., 2: 85–93. Search in Google Scholar

Ayanwale B.A. (2003). The effect of feeding sodium sesquicarbonate treated soyabean on the energy utilization and performance of broiler chickens. Pertanika J. Trop. Agric. Sci., 26: 7–14. Search in Google Scholar

Ayanwale B.A. (2006). Growth and carcas characteristics of broilers fed alkali processed soybeans. Niger. J. Anim. Prod., 33: 40–44. Search in Google Scholar

Bajaj J.K., Salwan P., Salwan S. (2016). Various possible toxicants involved in thyroid dysfunction: a review. J. Clin. Diagn. Res., 10: FE01–FE03. Search in Google Scholar

Balázs B., Kelemen E., Centofanti T., Vasconcelos M.W., Iannetta, P.P. (2021). Integrated policy analysis to identify transformation paths to more sustainable legume-based food and feed value-chains in Europe. Agroecol. Sustain. Food Syst., 45: 931–953. Search in Google Scholar

Barros Dourado L.R., Fonseca Pascoal L.A., Kazue N., Perazzo Costa F.G., Biagiotti D. (2011). Soybeans (glycine max) and soybean products in poultry and swine nutrition. In: Recent trends for enhancing the diversity and quality of soybean products, Krezhova D. (ed.). Intech Open. Search in Google Scholar

Beukovic D., Beukovic M., Ljubojevic D., Stanacev V., Bjedov S., Ivkovic M. (2012). Effect soybean heat treatment on broiler slaughter traits. Proc. 3rd Int. Sci. Symp. Agrosym, 15–17.11.2012, Jahorina, Bosnia and Herzegovina, pp. 541–547. Search in Google Scholar

Björck I., Asp N.G. (1983). The effects of extrusion cooking on nutritional value – a literature review. J. Food Eng., 2: 281–308. Search in Google Scholar

Camden B.J., Morel P.C.H., Thomas D.V., Ravindran V., Bedford M.R. (2001). Effectiveness of exogenous microbial phytase in improving the bio availabilities of phosphorus and other nutrients in maize-soya-bean meal diets for broilers. Anim. Sci., 73: 289–297. Search in Google Scholar

Cardoso V., Ribeiro T., Fernandes V., Guerreiro C., Centeno M., Pires V., Ponte P., Goyal A., Najmudin S., Alves V.D., Prates J.A.M., Ferreira L.M.A., Fontes C.M.G.A. (2020). Exogenous enzymes improve the nutritive value of cereal-based diets for monogastric animals through different mechanisms. In: Advances in animal health, medicine and production, Freitas Duarte A., Lopes da Costa L. (eds). Springer International Publishing, Cham., pp. 108–127. Search in Google Scholar

Carr P.M., Cavigelli M.A., Darby H., Delate K., Eberly J.O., Fryer H.K., Gramig G.G., Heckman J.R., Mallory E.B., Reeve J.R., Silva E.M. (2020). Green and animal manure use in organic field crop systems. Agron. J., 112: 648–674. Search in Google Scholar

Cervantes-Pahm S.K., Stein H.H. (2010). Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci., 88: 2674–2683. Search in Google Scholar

Chahal D.S. (1991). Production of Trichoderma reesei cellulase system with high hydrolytic potential by solid-state fermentation. In: Enzymes in biomass conversion, Leatham G.F., Himmel M.E. (eds). ACS Publications, 460. Search in Google Scholar

Chaturvedi S., Hemamalini R., Khare S.K. (2012). Effect of processing conditions on saponin content and antioxidant activity of Indian varieties of soybean (Glycine max Linn.). Ann. Phytomed., 1: 62–68. Search in Google Scholar

Chojnacka K., Mikula K., Izydorczyk G., Skrzypczak D., Witek-Krowiak A., Gersz A., Moustakas, K., Iwaniuk J., Grzędzicki M., Korczyński M. (2021). Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. J. Environ. Manage., 291: 112693. Search in Google Scholar

Cid-Gallegos M.S., Corzo-Ríos L.J., Jiménez-Martinez C., Sánchez-Chino X.M. (2022). Protease inhibitors from plants as therapeutic agents – a review. Plant Foods Hum. Nutr., 77: 20–29. Search in Google Scholar

Clarke E., Wiseman J. (2005). Effects of variability in trypsin inhibitor content of soya bean meals on true and apparent ileal digestibility of amino acids and pancreas size in broiler chicks. Anim. Feed Sci. Technol., 121: 125–138. Search in Google Scholar

Clarke E., Wiseman J. (2007). Effects of extrusion conditions on trypsin inhibitor activity of full fat soybeans and subsequent effects on their nutritional value for young broilers. Br. Poult. Sci., 48: 703–712. Search in Google Scholar

Costa F.G.P., Goulart C.C., Figueiredo D.F., Oliveira C.F.S., Silva J.H.V. (2008). Economic and environmental impact of using exogenous enzymes on poultry feeding. Int. J. Poult. Sci., 7: 311–314. Search in Google Scholar

Cowieson A.J., Roos F.F. (2013). Bioefficacy of a mono-component protease in the diets of pigs and poultry: a meta-analysis of effect on ileal amino acid digestibility. J. Appl. Anim. Nutr., 2: E13. Search in Google Scholar

Cowieson A.J., Sorbara J.O.B., Pappenberger G., Abdollahi M.R., Ravindran V. (2020). Toward standardized amino acid matrices for exogenous phytase and protease in corn–soybean meal–based diets for broilers. Poultry Sci., 99: 3196–3206. Search in Google Scholar

Dale N. (1994). National research council nutrient requirements of poultry – ninth revised edition. J. Appl. Poult. Res., 3: 101–101. Search in Google Scholar

de Coca-Sinova A., Valencia D.G., Jiménez-Moreno E., Lázaro R., Mateos G.G. (2008). Apparent ileal digestibility of energy, nitrogen, and amino acids of soybean meals of different origin in broilers. Poultry Sci., 87: 2613–2623. Search in Google Scholar

de Visser C., Schreuder R., Stoddard F. (2014). The EU’s dependence on soya bean import for the animal feed industry and potential for EU-produced alternatives. OCL, 21: D407. Search in Google Scholar

Dei H.K. (2011). Soybean as a feed ingredient for livestock and poultry. In: Recent trends for enhancing the diversity and quality of soybean products, Krezhova D. (ed.). Intech Open, pp. 215–226. Search in Google Scholar

Dunmire K.M. (2022). Influence of ingredient quality and diet formulation on amino acid digestibility and growth performance of poultry and swine (Doctoral dissertation, Kansas State University). Search in Google Scholar

Dzwonkowski W. (2021). Processed animal protein as one of the elements of the policy for reducing gmos in the feeding of livestock. Problems of Agricultural Economics, 4: 116–133. Search in Google Scholar

Ebere D.U. (2016). Effect of some processing methods on hemagglutinin activity of lectin extracts from selected grains (cereals and legumes). J. Adv. Acad. Res., 2: 24–59. Search in Google Scholar

Erdaw M.M., Wu S., Iji P.A. (2017). Growth and physiological responses of broiler chickens to diets containing raw, full-fat soybean and supplemented with a high-impact microbial protease. Asian-Australas. J. Anim. Sci., 30: 1303. Search in Google Scholar

Faldet M.A., Satter L.D., Broderick G.A. (1992). Determining optimal heat treatment of soybeans by measuring available lysine chemically and biologically with rats to maximize protein utilization by ruminants. J. Food Nutr. Res., 122: 151–160. Search in Google Scholar

FAO (2023). Available at https://www.fao.org/family-farming/detail/en/c/1459441/ (verified 30 July 2023). Search in Google Scholar

Fekadu Gemede H. (2014). Antinutritional factors in plant foods: potential health benefits and adverse effects. Int. J. Food Sci. Nutr., 3: 284. Search in Google Scholar

Feng J., Liu X., Xu Z.R., Liu Y.Y., Lu Y.P. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol., 134: 235–242. Search in Google Scholar

Flachowsky G., Meyer. U. (2015). Challenges for plant breeders from the view of animal nutrition. Agriculture, 5: 1252–1276. Search in Google Scholar

Foley J.J., Rosentrater K.A., Lamsal B., Poovaiah N. (2013). Processing approaches to improve functionality and value of soybean products. Proc. 2013 ASABE Annual Int. Meeting, 21–24.07.2013, Kansas City, Missouri. Search in Google Scholar

Fu J., Gao, J., Liang, Z., Yang. D. (2021). PDI-regulated disulfide bond formation in protein folding and biomolecular assembly. Molecules, 26: 171. Search in Google Scholar

Gerde J.A., Hammond E.G., Johnson L.A. Su C., Wang T., White P.J. (2020). Soybean oil. In: Bailey’s industrial oil and fat products. John Wiley & Sons, pp. 1–68. Search in Google Scholar

Guo B., Sun L., Jiang S., Ren H., Sun R., Wei Z., Hong H., Luan X., Wang J., Wang X., Xu D. (2022). Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet., 135: 4095–4121. Search in Google Scholar

Ghazi S., Rooke J.A., Galbraith H. (2003). Improvement of the nutritive value of soybean meal by protease and a-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poult. Sci., 44: 410–418. Search in Google Scholar

Ghazi S., Rooke J. A., Galbraith H., Bedford M.R. (2002). The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels. Br. Poult. Sci., 43: 70–77. Search in Google Scholar

Gilani G.S., Xiao C.W., Cockell K.A. (2012). Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr., 108: S315–S332. Search in Google Scholar

Goebel K.P., Stein H.H. (2011). Ileal digestibility of amino acids in conventional and low-kunitz soybean products fed to weanling pigs. Asian-Australas. J. Anim. Sci., 24: 88–95. Search in Google Scholar

Heger J., Wiltafsky M., Zelenka J. (2016). Impact of different processing of full-fat soybeans on broiler performance. Czech J. Anim. Sci., 61: 57–66. Search in Google Scholar

Hemetsberger F., Zwirzitz B., Yacoubi N., Kneifel W., Schedle K., Domig K.J. (2022). Effect of two soybean varieties treated with different heat intensities on ileal and caecal microbiota in broiler chickens. Animals, 12: 1109. Search in Google Scholar

Hemetsberger F., Hauser T., Domig K.J., Kneifel W., Schedle K. (2021). Interaction of soybean varieties and heat treatments and its effect on growth performance and nutrient digestibility in broiler chickens. Animals, 11: 2668. Search in Google Scholar

Herkelman K.L., Cromwell G.L., Stahly T.S. (1991). Effects of heating time and sodium metabisulfite on the nutritional value of full-fat soybeans for chicks. J. Anim. Sci., 69: 4477–4486. Search in Google Scholar

Herman R.A., Dunville C.M., Juberg D.R., Fletcher D.W., Cromwell G.L. (2011). Performance of broiler chickens fed diets containing DAS-68416-4 soybean meal. GM. Crops., 2: 169–175. Search in Google Scholar

Hoffmann D., Thurner S., Ankerst D., Damme K., Windisch W., Brugger D. (2019). Chickens’ growth performance and pancreas development exposed to soy cake varying in trypsin inhibitor activity, heat-degraded lysine concentration, and protein solubility in potassium hydroxide. Poultry Sci., 98: 2489–2499. Search in Google Scholar

Jahanian R., Rasouli E. (2016). Effect of extrusion processing of soybean meal on ileal amino acid digestibility and growth performance of broiler chicks. Poultry Sci., 95: 2871–2878. Search in Google Scholar

Jazi V., Mohebodini H., Ashayerizadeh A., Shabani A., Barekatain R. (2019). Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poultry Sci., 98: 5648–5660. Search in Google Scholar

Jeong J.S., Park J.W., Lee S.I., Kim I.H. (2016). Apparent ileal digestibility of nutrients and amino acids in soybean meal, fish meal, spray-dried plasma protein and fermented soybean meal to weaned pigs. Anim. Sci. J., 87: 697–702. Search in Google Scholar

Jiang Q., Wu W., Wan Y., Wei Y., Kawamura Y., Li J., Guo Y., Ban Z., Zhang B. (2022). Energy values evaluation and improvement of soybean meal in broiler chickens through supplemental multi enzyme. Poultry Sci., 101:101978. Search in Google Scholar

Kaewtapee C., Eklund M., Wiltafsky M., Piepho H.P., Mosenthi R., Rosenfelder P. (2017). Influence of wet heating and autoclaving on chemical composition and standardized ileal crude protein and amino acid digestibility in full-fat soybeans for pigs. J. Anim. Sci., 95: 779–788. Search in Google Scholar

Karr-Lilienthal L.K., Bauer L.L., Utterback P.L., Zinn K.E., Frazier R.L., Parsons C.M., Fahey G.C. (2006). Chemical composition and nutritional quality of soybean meals prepared by extruder/expeller processing for use in poultry diets. J. Agric. Food Chem., 54: 8108–8114. Search in Google Scholar

Khan M.A.D.I.H.A., Javed M.M., Zahoor S.A.N.A., HAQ U. (2013). Kinetics and thermodynamic study of urease extracted from soybeans. Biologia, 59: 7–14. Search in Google Scholar

Kiers J.L., Rombouts F.M., Nout M.J.R. (2000). In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol., 60: 163–169. Search in Google Scholar

Kim M., Ingale S.L., Hosseindoust A., Choi Y., Kim K., Chae B. (2021). Synergistic effect of exogenous multi-enzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and morphology in broilers fed corn-wheat-soybean meal diets. Anim. Biosci., 34: 1365–1374. Search in Google Scholar

Kocher A., Choct M., Ross G., Bro J., Chung T.K. (2003). Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. J. Appl. Poult. Res., 12: 275–283. Search in Google Scholar

Kuenz S., Thurner S., Hoffmann D., Kraft K., Wiltafsky-Martin M., Damme K., Windisch W., Brugger D. (2022). Effects of gradual differences in trypsin inhibitor activity on the estimation of digestible amino acids in soybean expellers for broiler chickens. Poultry Sci., 101: 101740. Search in Google Scholar

Kumar Y., Basu S., Goswami D., Devi M., Shivhare U.S., Vishwakarma, R.K. (2022). Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci., 4: e111. Search in Google Scholar

Lannuzel C., Smith A., Mary A.L., Della Pia E.A., Kabel M.A., de Vries S. (2022). Improving fiber utilization from rapeseed and sunflower seed meals to substitute soybean meal in pig and chicken diets: A review. Anim. Feed Sci. Technol., 285: 115213. Search in Google Scholar

Lee S.A., Stein H.H. (2022). Digestibility and availability of nutrients in feed ingredients. Sustainable Swine Nutrition, 2nd ed. John Wiley & Sons, pp. 493–545. Search in Google Scholar

Leeson S., Atteh J.O. (1996). Response of broiler chicks to dietary full-fat soybeans extruded at different temperatures prior to or after grinding. Anim. Feed Sci. Technol., 57: 239–245. Search in Google Scholar

Leeson S., Atteh J.O., Summers D. (1987). Effects of increasing dietary levels of commercially heated soybeans on performance, nutrient retention and carcass quality of broiler chickens. Can. J. Anim. Sci., 67: 821–828. Search in Google Scholar

Li Y., Guo B., Wu Z., Wang W., Li C., Liu G., Cai H. (2020). Effects of fermented soybean meal supplementation on the growth performance and cecal microbiota community of broiler chickens. Animals, 10: 1098. Search in Google Scholar

Liener I.E. (1994). Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr., 34: 31–67. Search in Google Scholar

Loeffler T., Shim M.Y., Beckstead R.B., Batal A.B., Pesti G.M. (2013). Amino acid digestibility and metabolizable energy of genetically selected soybean products. Poultry Sci., 92: 1790–1798. Lonsane B.K., Ghildyal N.P., Budiatman S., Ramakrishna S.V. (1985). Engineering aspects of solid state fermentation. Enzyme Microb. Technol., 7: 258–265. Search in Google Scholar

Lu F., Alenyorege E.A., Ouyang N., Zhou A., Ma H. (2022). Simulated natural and high temperature solid-state fermentation of soybean meal: A comparative study regarding microorganisms, functional properties and structural characteristics. LWT, 159: 113125. Search in Google Scholar

Machida K., Furlan Goncalves Dias F., Fan Z., De Moura Bell J.M.L.N. (2022). From a single-stage to a two-stage countercurrent extraction of lipids and proteins from full-fat chickpea flour: maximizing process extractability and economic feasibility. Processes., 10: 2349. Search in Google Scholar

Marsmana G.J.P., Gruppen H., Van Zuilichem D.J., Resink J.W., Voragen A.G.J. (1995). The influence of screw configuration on the in vitro digestibility and protein solubility of soybean and rapeseed meals. J. Food Eng., 26: 13–28. Search in Google Scholar

Martin N. (2015). Domestic soybean to compensate the European protein deficit: Illusion or real market opportunity? OCL, 22: D502. Search in Google Scholar

Meng X., Slominski B.A., Nyachoti C.M., Campbell L.D., Guenter W. (2005). Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Sci., 84: 37–47. Search in Google Scholar

Mittal P., Kumar V., Anita R.A.N.I., Gokhale S.M. (2021). Bowman-Birk inhibitor in soybean: Genetic variability in relation to total trypsin inhibitor activity and elimination of Kunitz trypsin inhibitor. Not. Sci. Biol., 13: 10836–10836. Search in Google Scholar

Newkirk R.W., Classen H.L., Edney M.J. (2003). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Anim. Feed Sci. Technol., 104: 111–119. Search in Google Scholar

Niwińska B., Witaszek K., Niedbała G., Pilarski K. (2020). Seeds of n-GM soybean varieties cultivated in Poland and their processing products as high-protein feeds in cattle nutrition. Agriculture, 10: 174. Search in Google Scholar

Noblet J., Wu S.B. Choct M. (2022). Methodologies for energy evaluation of pig and poultry feeds: A review. Anim. Nutr., 8: 185–203. Search in Google Scholar

Oliveira F.N.D., Costa F.G.P., Silva J.H.V.D., Brandão P.A., Amarante Júnior V.D.S., Nascimento G.A.J.D., Barros L.R. (2005). Effects of full-fat extruded soybean at different temperatures on performance of broiler chicks in the growing and final phases. Rev. Bras. de Zootec., 34: 1950–1955. Search in Google Scholar

Omizu Y., Tsukaoto C., Chettri R., Tamang J.P. (2011). Determination of saponin contents in raw soybean and fermented soybean foods of India. J. Sci. Industr. Res., 70: 533–538. Search in Google Scholar

Opazo R., Ortuzar F., Navarrete P., Espejo R., Romero J. (2012). Reduction of soybean meal non-starch polysaccharides and α-galactosides by solid-state fermentation using cellulolytic bacteria obtained from different environments. PLoS ONE, 7(9): e44783. Search in Google Scholar

Pacheco W.J., Stark C.R., Ferket P.R., Brake J. (2014). Effects of trypsin inhibitor and particle size of expeller-extracted soybean meal on broiler live performance and weight of gizzard and pancreas. Poultry Sci., 93: 2245–2252. Search in Google Scholar

Perilla N.S., Cruz M.P., De Belalcazar F., Diaz G.D. (1997). Effect of temperature of wet extrusion on the nutritional value of full‐fat soyabeans for broiler chickens. Br. Poult. Sci., 38: 412–416. Search in Google Scholar

Qin G.X., Verstegen M.W.A., Van der Poel A.F.B. (1998). Effect of temperature and time during steam treatment on the protein quality of full-fat soybeans from different origins. J. Sci. Food Agric., 77: 393–398. Search in Google Scholar

Rackis J.J. (1965). Physiological properties of soybean trypsin inhibitors and their relationship to pancreatic hypertrophy and growth inhibition of rats. Fed. Proc., 24: 1488–1493. Search in Google Scholar

Rada V., Lichovnikova M., Safarik I. (2017). The effect of soybean meal replacement with raw full-fat soybean in diets for broiler chickens. J. Appl. Anim. Res., 45: 112–117. Search in Google Scholar

Ravindran V., Abdollahi M.R., Bootwalla S.M. (2014). Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poultry Sci., 93: 2567–2577. Search in Google Scholar

Ravindran V., Adeola O., Rodehutscord M., Kluth H., Van der Klis J.D., Van Eerde E., Helmbrecht A. (2017). Determination of ileal digestibility of amino acids in raw materials for broiler chickens– results of collaborative studies and assay recommendations. Anim. Feed Sci. Technol., 225: 62–72. Search in Google Scholar

Real-Guerra R., Stanisçuaski F., Carlini C.R. (2013). Soybean urease: over a hundred years of knowledge. In: A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. Intech Open. Search in Google Scholar

Rebollo-Hernanz M., Kusuma, J., Bringe N.A., She Y., de Mejia E.G. (2023). Peptide release, radical scavenging capacity, and antioxidant responses in intestinal cells are determined by soybean variety and gastrointestinal digestion under simulated conditions. Food Chem., 405: 134929. Search in Google Scholar

Rocha C., Durau J.F., Barrilli L.N.E., Dahlke F., Maiorka P., Maiorka A. (2014). The effect of raw and roasted soybeans on intestinal health, diet digestibility, and pancreas weight of broilers. J. Appl. Poult. Res., 23: 71–79. Search in Google Scholar

Rojas O.J., Stein H.H. (2013). Concentration of digestible, metabolizable, and net energy and digestibility of energy and nutrients in fermented soybean meal, conventional soybean meal, and fish meal fed to weanling pigs. J. Ani. Sci., 91: 4397–4405. Search in Google Scholar

Rostagno H.S., Albino L.F.T., Donzele J.L., Gomes P.C., Oliveira R.F. M., Lopes D.C., Ferreira A.S., Barreto S.L.T. (2011). Brazilian tables for poultry and swine-composition of feedstuffs and nutritional requirements. Viçosa. Minas Gerais. Search in Google Scholar

Rutherfurd S.M., Moughan P.J. (2012). Available versus digestible dietary amino acids. Br. J. Nutr., 108: S298–S305. Search in Google Scholar

Sakkas P., Royer E., Smith S., Oikeh I., Kyriazakis I. (2019). Combining alternative processing methods for European soybeans to be used in broiler diets. Anim. Feed Sci. Technol., 253: 45–55. Search in Google Scholar

Samtiya M., Aluko R.E., Puniya A.K., Dhewa T. (2021). Enhancing micronutrients bioavailability through fermentation of plant-based foods: a concise review. Fermentation, 7: 63. Search in Google Scholar

Shi C., Zhang Y., Yin Y., Wang C., Lu Z., Wang F., Feng J., Wang Y. (2017b). Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs. Anim. Sci. J., 95: 3996–4004. Search in Google Scholar

Shi C., Zhang Y., Lu Z., Wang Y. (2017a). Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol., 8: 1–9. Search in Google Scholar

Sieradzki Z., Mazur M., Król B., Kwiatek K. (2021). Prevalence of genetically modified soybean in animal feedingstuffs in Poland. J. Vet. Res., 65: 93–99. Search in Google Scholar

Sierżant K., Piksa E., Konkol D., Lewandowska K., Asghar M.U. (2023). Performance and antioxidant traits of broiler chickens fed with diets containing rapeseed or flaxseed oil and optimized quercetin. Sci. Rep., 13: 14011. Search in Google Scholar

Soumeh E.A., Mohebodini H., Toghyani M., Shabani A., Ashayerizadeh A., Jazi V. (2019). Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens. Poultry Sci., 98: 6797–6807. Search in Google Scholar

Stein H.H., Berger L.L., Drackley J.K., Fahey Jr G.C., Hernot D.C., Parsons C.M. (2008). Nutritional properties and feeding values of soybeans and their coproducts. In: Soybeans, Johnson L.A., White P.J., Galloway R. (eds). AOCS Press, pp. 613–660. Search in Google Scholar

Ton Nu M.A., Lupatsch I., Zannatta J.S., Schulze H., Zijlstra R.T. (2020). Thermomechanical and enzyme-facilitated processing of soybean meal enhanced in vitro kinetics of protein digestion and protein and amino acid digestibility in weaned pigs. J. Anim. Sci., 98: skaa224. Search in Google Scholar

Udeogu E., Awuchi C. (2016). Effect of some processing methods on hemagglutinin activity of lectin extracts from selected grains (cereals and legumes). Int. J. Adv. Acad. Res., 2: 2488–9849. Search in Google Scholar

Upadhaya S.D., Kim I.H. (2015). Ileal digestibility of nutrients and amino acids in unfermented, fermented soybean meal and canola meal for weaning pigs. Anim. Sci. J., 86: 408–414. Search in Google Scholar

Van der Poel A.F.B., Abdollahi M.R., Cheng H., Colovic R., Den Hartog L.A., Miladinovic D., Page G., Sijssens K., Smillie J.F., Thomas M., Hendriks W.H. (2020). Future directions of animal feed technology research to meet the challenges of a changing world. Anim. Feed Sci. Technol., 270: 114692. Search in Google Scholar

Velázquez-De Lucio B.S., Hernández-Domínguez E.M., Villa-Garcia M., Diaz-Godinez G., Mandujano-Gonzalez V., Mendoza-Mendoza B., Alvarez-Cervantes J. (2021). Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts, 11: 851. Search in Google Scholar

Wang H., Faris R.J., Wang T., Spurlock M.E., Gabler N. (2009). Increased in vitro and in vivo digestibility of soy proteins by chemical modification of disulfide bonds. J. Am. Oil Chem. Soc., 86: 1093–1099. Search in Google Scholar

Wang H., Guo Y., Shih J.C. (2008). Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Technol., 140: 376–384. Search in Google Scholar

Wiriyaumpaiwong S., Soponronnarit S., Prachayawarakorn S. (2004). Comparative study of heating processes for full-fat soybeans. J. Food Eng., 65: 371–382. Search in Google Scholar

Xiong Y.L., Guo A. (2020). Animal and plant protein oxidation: chemical and functional property significance. Foods, 10: 40. Search in Google Scholar

Zaheer K., Humayoun Akhtar M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr., 57: 1280–1293. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin