[AOAC (2016). Official Methods of Analysis of AOAC International, 20th ed. Association of Official Analytical Chemists International, Gaithersburg, MD, USA.]Search in Google Scholar
[Barceló-Coblijn G., Murphy E.J., Othman R., Moghadasian M.H., Kashour T., Friel J.K. (2008). Flaxseed oil and fish-oil capsule consumption alters human red blood cell n–3 fatty acid composition: A multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am. J. Clin. Nutr., 88: 801–809.]Search in Google Scholar
[Bartkovský M., Sopková D., Andrejčáková Z., Vlčková R., Semjon B., Marcinčák S., Bujňák L., Pospiech M., Nagy J., Popelka P., Kyzeková P. (2022). Effect of concentration of flaxseed (Linum usitatissimum) and duration of administration on fatty acid profile, and oxidative stability of pork meat. Animals, 12: 1087.]Search in Google Scholar
[Bečková R., Václavková E. (2010). The effect of linseed diet on carcass value traits and fatty acid composition in muscle and fat tissue of fattening pigs. Czech J. Anim. Sci., 55: 313–320.]Search in Google Scholar
[Bernacchia R., Preti R., Vinci G. (2014). Chemical composition and health benefits of flaxseed. Austin. J. Nutri. Food Sci., 2: 1045.]Search in Google Scholar
[Brestenský M., Nitrayová S., Heger J., Patráš P. (2017). Chromic oxide and acid-insoluble ash as markers in digestibility studies with growing pigs and sows. J. Anim. Physiol. Anim. Nutr., 101: 46–52.]Search in Google Scholar
[Corino C., Musella M., Mourot J. (2008). Influence of extruded linseed on growth, carcass composition and meat quality of slaughtered pigs at 110 and 160 kilograms of live weight. J. Anim. Sci., 86: 1850–1860.]Search in Google Scholar
[Costamagna D., Costelli P., Sampaolesi M., Penna F. (2015). Role of inflammation in muscle homeostasis and myogenesis. Mediat. Inflamm., 2015: 805172.]Search in Google Scholar
[Czech A., Ognik K., Laszewska M., Sembratowicz I. (2017). The effect of raw and extruded linseed on the chemical composition, lipid profile and redox status of meat of turkey hens. Anim. Sci. Pap. Rep., 35: 57–69.]Search in Google Scholar
[Czech A., Ognik K., Laszewska M., Cholewińska E., Stępniowska A. (2018). Modification of the lipid profile and antioxidant status of the blood plasma of turkey hens fed mixtures with raw or extruded linseed. J. Anim. Physiol. Anim. Nutr., 102: e270–e278.]Search in Google Scholar
[de Tonnac A., Karim-Luisset S., Mourot J. (2017). Effect of different dietary linseed sources on fatty acid composition in pig tissues. Livest. Sci., 203: 124–131.]Search in Google Scholar
[Delimont N.M., Haub M.D., Lindshield B.L. (2017). The impact of tannin consumption on iron bioavailability and status: a narrative review. Curr. Dev. Nutr., 1: 1–12.]Search in Google Scholar
[Duan Y., Li F., Li L., Fan J., Sun X., Yin Y. (2014). n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Brit. J. Nutr., 111: 445–451.]Search in Google Scholar
[Friendship R.M., Henry S.C. (1996). Cardiovascular system, haematology and clinical chemistry. In: Diseases of swine, Leman A.D., Straw B.E., Mengeling W.L., D’Allaire S., Taylor D.J. (eds). Iowa State Univ. Press, USA, pp. 3–11.]Search in Google Scholar
[Goyal A., Sharma V., Upadhyay N., Gill S., Sihag M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. J. Food Sci. Technol., 51: 1633–1653.]Search in Google Scholar
[Guillevic M., Kouba M., Mourot J. (2009). Effect of a linseed diet or a sunflower diet on performances, fatty acid composition, lipogenic enzyme activities and stearoyl-CoA-desaturase activity in the pig. Livest. Sci., 124: 288–294.]Search in Google Scholar
[Hallund J., Tetens I., Bügel S., Tholstrup T., Bruun J.M. (2008). The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr. Metab. Cardiovasc. Dis., 18: 497–502.]Search in Google Scholar
[Haran W.H., AL-Saeed M.H., AL-Masoudi E.A. (2017). Study the effect of flax lignan extract of Linum usitatissimum and conjugated estrogen on physiological parameters in female rats. Bas. J. Vet. Res., 16: 1.]Search in Google Scholar
[Huang F.R., Zhan Z.P., Luo J., Liu Z.X., Peng J. (2008). Duration of dietary linseed feeding affects the intramuscular fat, muscle mass and fatty acid composition in pig muscles. Livest. Sci., 118: 132–139.]Search in Google Scholar
[Imran M., Anjum F.M., Masood S., Butt M.S., Siddiq M., Sheikh M.A. (2013). Reduction of cyanogenic compounds in flaxseed (Linum usitatissimum L.) meal using thermal treatment. Int. J. Food Prop., 8: 1809–1818.]Search in Google Scholar
[Juárez M., Dugan M.E., Aldai N., Aalhus J.L., Patience J.F., Zijlstra R.T., Beaulieu A.D. (2011). Increasing omega-3 levels through dietary co-extruded flaxseed supplementation negatively affects pork palatability. Food Chem., 126: 1716–1723.]Search in Google Scholar
[Juárez M., Dugan M.E.R., Aldai N., Aalhus J.L., Patience J.F., Zijlstra R.T., Beaulieu A.D. (2010). Feeding co-extruded flaxseed to pigs: effects of duration and feeding level on growth performance and backfat fatty acid composition of grower-finisher pigs. Meat Sci., 84: 578–584.]Search in Google Scholar
[Kirchgessner M., Roth F.X. (1983). Equation for prediction of the energy value in mixed feeds for pigs. J. Anim. Physiol. Anim. Nutr., 50: 270–275.]Search in Google Scholar
[Kour J., Singh S., Chandra Saxena D. (2021). Retention of bioactive compounds during extrusion processing and storage. Food Chem., 13: 10019.]Search in Google Scholar
[Króliczewska B., Mista D., Króliczewski J., Zawadzki W., Kubaszewski R., Wincewicz E., Zuk M., Szopa J. (2017). A new genotype of flax (Linum usitatissimum L.) with decreased susceptibility to fat oxidation: consequences to hematological and biochemical profiles of blood indices. J. Sci. Food Agric., 97: 165–171.]Search in Google Scholar
[Leikus R., Juskiene V., Juska R., Juodka R., Stankeviciene D., Nainiene R, Siukscius A. (2018). Effect of linseed oil sediment in the diet of pigs on the growth performance and fatty acid profile of meat. Rev. Bras. Zootec., 47: e20170104.]Search in Google Scholar
[Lin B., Gong J., Wang Q., Cui S., Yu H., Huang B. (2011). In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloids, 25: 180–188.]Search in Google Scholar
[Lyberg A., Fasoli E., Adlercreutz P. (2005). Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids, 40: 969–979.]Search in Google Scholar
[Mukhopadhyay N., Sarkar S., Bandyopadhyay S. (2007). Effect of extrusion cooking on anti-nutritional factor tannin in linseed (Linum usitatissimum L) meal. Int. J. Food Sci. Nutr., 58: 588–594.]Search in Google Scholar
[Nutrient Requirements of Swine (2012). NCR 11th ed. National Academy Press, Washington, DC, USA.]Search in Google Scholar
[Okrouhlá M., Stupka R., Čítek J., Šprysl M. Brzobohatý L. (2013). Effect of dietary linseed supplementation on the performance, meat quality, and fatty acid profile of pigs. Czech J. Anim. Sci., 58: 279–288.]Search in Google Scholar
[Park E.R., Hong J.H., Lee D.H., Han S.B., Lee K.B., Park J.S., Chung H.W., Hong K.H., Kim M.C. (2005). Analysis and decrease of cyanogenic glucosides in flaxseed. J. Korean Soc. Food Sci. Nutr., 34: 875–879.]Search in Google Scholar
[Prasad K. (2005). Effect of chronic administration of lignan complex isolated from flaxseed on the hemopoietic system. Mol. Cell Biochem., 270: 139–145.]Search in Google Scholar
[Qian K.Y., Cui S.W., Goff H.D. (2012). Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloids, 28: 275–283.]Search in Google Scholar
[Rhee Y., Brunt A. (2011). Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr. J., 10: 44.]Search in Google Scholar
[Rodriguez M.L., Alzueta C., Rebole A., Ortiz L.T., Centeno C., Trevin J. (2001). Effect of inclusion level of linseed on the nutrient utilization of diets for growing broiler chickens. Brit. Poultry Sci., 42: 368–375.]Search in Google Scholar
[Schmitz G., Ecker J. (2008). The opposing effects of n-3 and n-6 fatty acids. J. Lipid Res., 47: 147–155.]Search in Google Scholar
[Schoknecht P.A., Pond W.G. (1993). Short-term ingestion of a high protein diet increases liver and kidney mass and protein accretion but not cellularity in young pigs. Proc. Soc. Exp. Biol. Med., 203: 251–254.]Search in Google Scholar
[Silska G., Walkowiak M. (2019). Comparative analysis of fatty acid composition in 84 accessions of flax (Linum usitatissimum L.). J. Pre-Clin. Clin. Res., 13: 118–129.]Search in Google Scholar
[Song C.H., Oh S.M., Lee S., Choi Y., Kim J.D., Jang A., Kim J. (2020). The ratio of dietary n-3 polyunsaturated fatty acids influences the fat composition and lipogenic enzyme activity in adipose tissue of growing pigs. Food Sci. Anim. Res., 40: 242–253.]Search in Google Scholar
[Soni-Guillermo E., Figueroa-Velasco J.L., Sánchez-Torres M.T., Martínez-Aispuro J.A., José L. Cordero-Mora J.L., Hernández-Cázares A.S., Copado-Bueno J., Ma F. (2017). Flaxseed (Linum usitatissimum) in pig diets to modify the lipid composition of meat. Agrociencia, 51: 709–724.]Search in Google Scholar
[Suzuki E.Y., Early R.J. (1991). Analysis of chromic oxide in small samples of feeds and feces using chlorine bleach. Can. J. Anim. Sci., 71: 931–934.]Search in Google Scholar
[Tarricone S., Colonna M.A., Giannico F., Ragni M., Lestingi A., Facciolongo A.M. (2019). Effect of an extruded linseed diet on meat quality traits in Nero Lucano pigs. S. Afr. J. Anim. Sci., 49: 1094–1103.]Search in Google Scholar
[Touré A., Xueming X. (2010). Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Comp. Rev., 9: 261–269.]Search in Google Scholar
[Ukropec J., Reseland J.E., Gasperikova D. (2003). The hypotriglyceridemic effect of dietary n-3 FA is associated with increased β-oxidation and reduced leptin expression. Lipids, 38: 1023–1029.]Search in Google Scholar
[Václavková E., Volek Z., Belkova J., Duskova D., Czauderna M., Marounek M. (2016). Effect of linseed and the combination of conjugated linoleic acid and linseed on the quality and oxidative stability of pig meat and subcutaneous fat. Vet. Med., 61: 428–435.]Search in Google Scholar
[Wirth M.D., Sevoyan M., Hofseth L., Shivappa N., Hurley T.G., Hébert J.R. (2018). The dietary inflammatory index is associated with elevated white blood cell counts in the national health and nutrition examination survey. Brain Behav. Immun., 69: 296–303.]Search in Google Scholar
[Zhan Z.P., Huang F.R., Luo J., Dai J.J., Yan X.H., Peng J. (2009). Duration of feeding linseed diet influences expression of inflammation-related genes and growth performance of growing-finishing barrows. J. Anim. Sci., 87: 603–611.]Search in Google Scholar
[Zuk M., Pelc K., Szperlik J., Sawula A., Szopa J. (2020). Metabolism of the cyanogenic glucosides in developing flax: metabolic analysis, and expression pattern of genes. Metabolites, 10: 288.]Search in Google Scholar