25 Nov 2011
4 Hefte pro Jahr
Uneingeschränkter Zugang

The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei

Online veröffentlicht: 27 Feb 2023
Volumen & Heft: AHEAD OF PRINT
Seitenbereich: -
Eingereicht: 21 Nov 2022
Akzeptiert: 13 Dec 2022
25 Nov 2011
4 Hefte pro Jahr

Abasubong K.P., Cheng H.h., Li Z.Q., Wang C.C., Huang Y.Y., Liu W.b., Zhang D.d., Zhu X.H., Jiang G.Z. (2021). Effects of replacing fish meal with plant proteins at different dietary protein levels on growth and feed intake regulation of juvenile channel catfish Ictalurus punctatus. Aquac. Res., 52: 4911–4922. Search in Google Scholar

Anson M.L. (1938). The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol., 22: 79–89. Search in Google Scholar

Barroso F.G., de Haro C., Sánchez-Muros M.-J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201. Search in Google Scholar

Belforti M., Gai F., Lussiana C., Renna M., Malfatto V., Rotolo L., De Marco M., Dabbou S., Schiavone A., Zoccarato I. (2015). Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci., 14: 4170. Search in Google Scholar

Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619. Search in Google Scholar

Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Krogdahl Å., Lock E.J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81. Search in Google Scholar

Borlongan I.G. (1990). Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture, 89: 315–325. Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254. Search in Google Scholar

Cai Y., Huang H., Yao W., Yang H., Xue M., Li X., Leng X. (2022). Effects of fish meal replacement by three protein sources on physical pellet quality and growth performance of Pacific white shrimp (Litopenaeus vannamei). Aquac. Rep., 25: 101210. Search in Google Scholar

Chaklader M.R., Siddik M.A., Fotedar R., Howieson J. (2019). Insect larvae, Hermetia illucens in poultry by-product meal for barramundi, Lates calcarifer modulates histomorphology, immunity and resistance to Vibrio harveyi. Sci. Rep., 9: 1–15. Search in Google Scholar

Cheung M.K., Yip H.Y., Nong W., Law P.T.W., Chu K.H., Kwan H.S., Hui J.H.L. (2015). Rapid change of microbiota diversity in the gut but not the hepatopancreas during gonadal development of the new shrimp model Neocaridina denticulata. Mar. Biotechnol., 17: 811–819. Search in Google Scholar

Choi I.H., Kim J.M., Kim N.J., Kim J.D., Park C., Park J.H., Chung T.H. (2018). Replacing fish meal by mealworm (Tenebrio molitor) on the growth performance and immunologic responses of white shrimp (Litopenaeus vannamei). Acta Sci. Anim. Sci., 40: e3907710.4025/actascianimsci.v40i1.39077 Search in Google Scholar

Corring T. (1980). The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev., 20: 1217–1235. Search in Google Scholar

Coz-Rakovac R., Strunjak-Perovic I., Hacmanjek M., Popovic N., Lipej Z., Sostaric B. (2005). Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the North Adriatic Sea. Vet. Res. Commun., 29: 677–687. Search in Google Scholar

DiGiacomo K., Leury B. (2019). Insect meal: a future source of protein feed for pigs? Animal, 13: 3022–3030.10.1017/S175173111900187331414653 Search in Google Scholar

Elia A.C., Capucchio M.T., Caldaroni B., Magara G., Dörr A.J.M., Biasato I., Biasibetti E., Righetti M., Pastorino P., Prearo M. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50–57. Search in Google Scholar

FAO (2018). The State of World Fisheries and Aquaculture. Meeting the sustainable development goals. Food and Agriculture Org. Search in Google Scholar

Fawole F.J., Adeoye A.A., Tiamiyu L.O., Ajala K.I., Obadara S.O., Ganiyu I.O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518: 734849. Search in Google Scholar

Feng P., He J., Lv M., Huang G., Chen X., Yang Q., Wang J., Wang D., Ma H. (2019). Effect of dietary Tenebrio molitor protein on growth performance and immunological parameters in Macrobrachium rosenbergii. Aquaculture, 511: 734247. Search in Google Scholar

Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Lussiana C., Antonopoulou E., Mola P., Chatzifotis S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol., 220: 34–45. Search in Google Scholar

Gatlin III, D.M., Barrows F.T., Brown P., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E., Hu G., Krogdahl Å., Nelson R. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res., 38: 551–579. Search in Google Scholar

Gaylord T.G., Barrows F.T. (2009). Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture, 287: 180–184. Search in Google Scholar

Gorissen S.H., Crombag J.J., Senden J.M., Waterval W., Bierau J., Verdijk L.B., van Loon L.J. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50: 1685–1695. Search in Google Scholar

Gu J., Liang H., Ge X., Xia D., Pan L., Mi H., Ren M. (2022). A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immunol., 120: 214–221. Search in Google Scholar

He Y., Liu X., Zhang N., Wang S., Wang A., Zuo R., Jiang Y. (2022). Replacement of commercial feed with fresh Black Soldier Fly (Hermetia illucens) larvae in Pacific White Shrimp (Litopenaeus vannamei). Aquac. Nutr., https://doi.org/10.1155/2022/9130400. Search in Google Scholar

Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Anim. Feed Sci. Technol., 203: 1–22. Search in Google Scholar

Henry M.A., Gai F., Enes P., Peréz-Jiménez A., Gasco L. (2018). Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 83: 308–313. Search in Google Scholar

Iaconisi V., Marono S., Parisi G., Gasco L., Genovese L., Maricchiolo G., Bovera F., Piccolo G. (2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476: 49–58. Search in Google Scholar

Jeong S.M., Khosravi S., Yoon K.Y., Kim K.W., Lee B.J., Hur S.W., Lee S.M. (2021). Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. Aquac. Rep., 20: 100747. Search in Google Scholar

Karlsen Ø., Amlund H., Berg A., Olsen R.E. (2017). The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquac. Res., 48: 123–133. Search in Google Scholar

Keshavarzifard M., Vazirzadeh A., Sharifinia M. (2021). Occurrence and characterization of microplastics in white shrimp, Metapenaeus affinis, living in a habitat highly affected by anthropogenic pressures, northwest Persian Gulf. Mar. Pollut. Bull., 169: 112581. Search in Google Scholar

Kesselring J., Gruber C., Standen B., Wein S. (2021). Effect of a phytogenic feed additive on the growth performance and immunity of Pacific white leg shrimp, Litopenaeus vannamei, fed a low fishmeal diet. J. World Aquac. Soc., 52: 303–315. Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29: 307–321. Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 a). The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299.10.2478/aoas-2022-0027 Search in Google Scholar

Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C., (2023). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquac., 12: 1836–1850. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 a). Biofloc as a food source for banana shrimp Fenneropenaeus merguiensis postlarvae. N. Am. J. Aquac., 84: 469–479.10.1002/naaq.10261 Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 b). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397.10.1007/s10499-021-00803-5 Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022 b). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021 Search in Google Scholar

Li S., Ji H., Zhang B., Zhou J., Yu H. (2017). Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture, 477: 62–70. Search in Google Scholar

Li X., Rahimnejad S., Wang L., Lu K., Song K., Zhang C. (2019). Substituting fish meal with housefly (Musca domestica) maggot meal in diets for bullfrog Rana (Lithobates) catesbeiana: Effects on growth, digestive enzymes activity, antioxidant capacity and gut health. Aquaculture, 499: 295–305. Search in Google Scholar

Liao Z., Gong Y., Zhao W., He X., Wei D., Niu J. (2022). Comparison effect of Rhodobacter sphaeroides protein replace fishmeal on growth performance, intestinal morphology, hepatic antioxidant capacity and immune gene expression of Litopenaeus vannamei under low salt stress. Aquaculture, 547: 737488. Search in Google Scholar

Mastoraki M., Mollá Ferrándiz P., Vardali S.C., Kontodimas D.C., Kotzamanis Y.P., Gasco L., Chatzifotis S., Antonopoulou E. (2020 a). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture, 528: 735511.10.1016/j.aquaculture.2020.735511 Search in Google Scholar

Mastoraki M., Vlahos N., Patsea E., Chatzifotis S., Mente E., Antonopoulou E. (2020 b). The effect of insect meal as a feed ingredient on survival, growth, and metabolic and antioxidant response of juvenile prawn Palaemon adspersus (Rathke, 1837). Aquac. Res., 51: 3551–3562.10.1111/are.14692 Search in Google Scholar

Mente E., Bousdras T., Feidantsis K., Panteli N., Mastoraki M., Kormas K.A., Chatzifotis S., Piccolo G., Gasco L., Gai F., Martin S.A.M., Antonopoulou E. (2022). Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species. Sci. Rep., 12: 121. Search in Google Scholar

Motte C., Rios A., Lefebvre T., Do H., Henry M., Jintasataporn O. (2019). Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9: 258. Search in Google Scholar

Nasr M.A., Reda R.M., Ismail T.A., Moustafa A. (2021). Growth, hemato-biochemical parameters, body composition, and myostatin gene expression of Clarias gariepinus fed by replacing fishmeal with plant protein. Animals, 11: 889. Search in Google Scholar

Ngo D.H., Kim S.K. (2014). Antioxidant effects of chitin, chitosan, and their derivatives. Adv. Food Nutr. Res., 73: 15–31. Search in Google Scholar

Oliva-Teles A., Enes P., Peres H. (2015). Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Feed Feeding Pract. Aquacult., 203–233.10.1016/B978-0-08-100506-4.00008-8 Search in Google Scholar

Panini R.L., Freitas L.E.L., Guimarães A.M., Rios C., da Silva M.F.O., Vieira F.N., Fracalossi D.M., Samuels R.I., Prudêncio E.S., Silva C.P. (2017 a). Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture, 473: 115–120.10.1016/j.aquaculture.2017.02.008 Search in Google Scholar

Panini R.L., Pinto S.S., Nóbrega R.O., Vieira F.N., Fracalossi D.M., Samuels R.I., Prudêncio E.S., Silva C.P., Amboni R.D.M.C. (2017 b). Effects of dietary replacement of fishmeal by mealworm meal on muscle quality of farmed shrimp Litopenaeus vannamei. Food Res. Int., 102: 445–450.10.1016/j.foodres.2017.09.01729195971 Search in Google Scholar

Peres H., Santos S., Oliva-Teles A. (2014). Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax). Fish Physiol. Biochem., 40: 1339–1347. Search in Google Scholar

Piccolo G., Iaconisi V., Marono S., Gasco L., Loponte R., Nizza S., Bovera F., Parisi G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol., 226: 12–20. Search in Google Scholar

Pinto W., Rønnestad I., Dinis M.T., Aragão C. (2013). Taurine and fish development: insights for the aquaculture industry, Taurine 8. Springer, pp. 329–334.10.1007/978-1-4614-6093-0_3023392894 Search in Google Scholar

Quang T.H., van Doan H., Stejskal V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Rev. Aquac., 14: 237–251. Search in Google Scholar

Rahimnejad S., Hu S., Song K., Wang L., Lu K., Wu R., Zhang C. (2019). Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 510: 150–159. Search in Google Scholar

Rapatsa M.M., Moyo N.A.G. (2017). Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquac. Rep., 5: 18–26. Search in Google Scholar

Rick W., Stegbauer H.P. (1974). α-Amylase measurement of reducing groups, Methods of enzymatic analysis. Elsevier, pp. 885–890. Search in Google Scholar

Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Insects Food Feed, 1: 233–240. Search in Google Scholar

Rőszer T. (2014). The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res., 358: 685–695. Search in Google Scholar

Rumpold B.A., Schlüter O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol., 17: 1–11. Search in Google Scholar

Sankian Z., Khosravi S., Kim Y.O., Lee S.M. (2018). Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture, 496: 79–87. Search in Google Scholar

Sharifinia M. (2015). Macroinvertebrates of the Iranian running waters: a review. Acta Limnol. Bras., 27: 356–369. Search in Google Scholar

Song S.G., Chi S.Y., Tan B.P., Liang G.L., Lu B.Q., Dong X.H., Yang Q.H., Liu H.Y., Zhang S. (2018). Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). Aquac. Res., 49: 2210–2217. Search in Google Scholar

Su J., Gong Y., Cao S., Lu F., Han D., Liu H., Jin J., Yang Y., Zhu X., Xie S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol., 69: 59–66. Search in Google Scholar

Tippayadara N., Dawood M.A.O., Krutmuang P., Hoseinifar S.H., Doan H.V., Paolucci M. (2021). Replacement of fish meal by Black Soldier Fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucus immunity of Nile Tilapia, Oreochromis niloticus. Animals, 11: 193. Search in Google Scholar

Tschirner M., Simon A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed, 1: 249–259. Search in Google Scholar

Van Huis A. (2022). Edible insects: Challenges and prospects. Entomol. Res., 52: 161–177. Search in Google Scholar

Van Huis A., van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. (2013). Edible insects: future prospects for food and feed security. FAO Forestry Paper 171. Food and Agriculture Organization of the United Nations, Rome. Search in Google Scholar

Wang G., Peng K., Hu J., Mo W., Wei Z., Huang Y. (2021). Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. Aquac. Nutr., 27: 986–997. Search in Google Scholar

Wang H., Hu X., Zheng Y., Chen J., Tan B., Shi L., Zhang S. (2022 a). Effects of replacing fish meal with cottonseed protein concentrate on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish Shellfish Immunol., 128: 91–100.10.1016/j.fsi.2022.07.06735921932 Search in Google Scholar

Wang T., Wang X., Shehata A.I., Wang R., Yang H., Wang Y., Wang J., Zhang Z. (2022 b). Growth performance, physiological and antioxidant capacity responses to dietary fish meal replacement with insect meals for aquaculture: A case study in red claw crayfish (Cherax quadricarinatus). Aquac. Res., 53: 3853–3864.10.1111/are.15892 Search in Google Scholar

Empfohlene Artikel von Trend MD