25 Nov 2011
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Effect of serum starvation and contact inhibition on dermal fibroblast cell cycle synchronization in two species of wild felids and domestic cat

Online veröffentlicht: 15 Jun 2022
Volumen & Heft: AHEAD OF PRINT
Seitenbereich: -
Eingereicht: 17 Jan 2022
Akzeptiert: 11 May 2022
25 Nov 2011
4 Hefte pro Jahr

Cell cycle synchronization of donor cells is an important step in mammalian somatic cell nuclear transfer (SCNT). This study was designed to compare the efficiency of serum starvation (Ss) and contact inhibition (cI) on cell cycle synchronization of jaguarundi, manul, and domestic cat skin fibroblasts, in the production of G0/G1 cells suitable for SCNT in felids. Ss was performed after the growing (G) cells reached 40–50% (G50+Ss), 60–70% (G70+Ss) and full confluency (Fc), i.e. in association with cI (cI+Ss). Frozen-thawed cells were cultured to the given state of confluency (d0; controls), and subjected to Ss or cI for 1, 3, and 5 days (d). In manul, the effect of Ss on arresting fibroblasts in the G0/G1 phase was noted after just 1d of culture at G70 confluence, while G50+Ss and cI+Ss were effective after 5d of treatment. In jaguarundi, 1–5d of G50+Ss and 5d of G70+Ss increased the percentage of G0/G1 cells versus d0 (P<0.01), with 5d of G70+Ss producing more (P<0.05) quiescent cells than after the same period of G50+Ss, cI+Ss and cI. In the domestic cat, Ss was efficient only after 3 and 5d of G50+Ss. In all species, cI alone failed to increase the proportion of G0/G1 cells compared to d0, however in the domestic cat, 5d of cI was more efficient than the same period of G50+Ss. In jaguarundi, >93% of cells were already in G0/G1 phase at d0 of Fc, suggesting that culture to Fc could be also a valuable method for fibroblast cell cycle synchronization in this species. In contrast to cI, prolonged Ss generated cell loss and could induce apoptosis and/or necrosis. In conclusion, Ss was the more efficient method for skin fibroblast cell cycle synchronization at the G0/G1 phase in manul, jaguarundi and the domestic cat. The response of cells to the treatments was species-specific, depending on cell confluence and duration of culture. This research may find application in preparing donor karyoplasts for SCNT in felids.

Bang J.I., Bae D.W., Lee H.S., Deb G.K., Kim M.O., Sohn S.H., Han C.H., Kong I.K. (2011). Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis. Proteomics, 11: 4454–4467. Search in Google Scholar

Blelloch R., Wang Z., Meissner A., Pollard S., Smith A., Jaenisch R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 24: 2007–2013. Search in Google Scholar

Boquest A.C., Day B.N., Prather R.S. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol Reprod., 60: 1013–1019. Search in Google Scholar

Campbell K.H., Loi P., Otaegui P.J., Wilmut I. (1996). Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod., 1: 40–46. Search in Google Scholar

Caso A., de Oliveira T., Carvajal S.V. (2015). Herpailurus yagouaroundi. The IUCN Red List of Threatened Species: e.T9948A50653167. Search in Google Scholar

Cho S.R., Ock S.A., Yoo J.G., Mohana Kumar B., Choe S.Y., Rho G.J. (2005). Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts. Reprod. Domest. Anim., 40: 171–176. Search in Google Scholar

Cho S.J., Yin X.J., Choi E., Lee H.S., Bae I., Han H.S., Yee S.T., Kim N.H., Kong I.K. (2007). DNA methylation status in somatic and placenta cells of cloned cats. Cloning Stem Cells, 9: 477–484. Search in Google Scholar

Coller H.A., Sang L., Roberts J.M. (2006). A new description of cellular quiescence. PLoS Biology, 4:e83. Search in Google Scholar

Curto M., Cole B.K., Lallemand D., Liu C.H., McClatchey A.I. (2007). Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell. Biol., 177: 893–903. Search in Google Scholar

Davis P.K., Ho A., Dowdy S.F. (2001). Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques, 30: 1322–1331. Search in Google Scholar

de Barros F.R., Goissis M.D., Caetano H.V., Paula-Lopes F.F., Peres M.A., Assumpção M.E., Visintin J.A. (2010). Serum starvation and full confluency for cell cycle synchronization of domestic cat (felis catus) foetal fibroblasts. Reprod. Domest. Anim., 45: 38–41. Search in Google Scholar

Fahrudin M., Otoi T., Karja N.W.K., Murakami M., Suzuki T. (2001). The effects of donor cell type and culture medium on in vitro development of domestic cat embryos reconstructed by nuclear transplantation. Asian-Aust. J. Anim. Sci., 14: 1057–1061. Search in Google Scholar

Gadbois D.M., Crissman H.A., Tobey R.A., Bradbury E.M. (1992). Multiple kinase arrest points in the G1 phase of nontransformed mammalian cells are absent in transformed cells. Proc. Natl. Acad. Sci. USA, 89: 8626–8630. Search in Google Scholar

Gómez M.C., Jenkis J.A., Giraldo A., Harris R.F., King A., Dresser B.L., Pope C.E. (2003). Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes. Biol. Reprod., 69: 1032–1041. Search in Google Scholar

Gómez M.C., Pope C.E., Giraldo A., Lyons L.A., Harris R.F., King A.L., Cole A., Godke R.A., Dresser B.L. (2004). Birth of african wildcat cloned kittens born from domestic cats. Cloning Stem Cells, 6: 247–258. Search in Google Scholar

Gómez M.C., Pope C.E., Dresser B.L. (2006). Nuclear transfer in cats and its application. Theriogenology, 66: 72–81. Search in Google Scholar

Gos M., Miloszewska J., Swoboda P., Trembacz H., Skierski J., Janik P. (2005). Cellular quiescence induced by contact inhibition or serum withdrawal in C3H10T1/2 cells. Cell. Prolif., 38: 107–116. Search in Google Scholar

Guan W.J., Liu C.Q., Li C.Y., Liu D, Zhang W.X., Ma Y.H. (2010). Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris). Cryo Letters, 31: 130–138. Search in Google Scholar

Han Z.M., Chen D.Y., Li J.S., Sun Q.Y., Wang P.Y., Du J., Zhang H.M. (2003). Flow cytometric cell-cycle analysis of cultured fibroblasts from the giant panda, Ailuropoda melanoleuca L. Cell. Biol. Int., 27: 349–353. Search in Google Scholar

Hayes O., Ramos B., Rodriguez L.L., Aguilar A., Badia T., Castro F.O. (2005). Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim. Reprod. Sci., 87: 181–192. Search in Google Scholar

Holt W.V., Pickard A.R., Prather R.S. (2004). Wildlife conservation and reproductive cloning. Reproduction, 127: 317–324. Search in Google Scholar

Imsoonthornruksa S., Sangmalee A., Srirattana K., Parnpai R., Ketudat-Cairns M. (2012). Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring. Cell. Reprogram., 14: 79–87. Search in Google Scholar

Jackson P., Nowell K. (2008 a). Panthera tigris ssp. balica. The IUCN Red List of Threatened Species: e.T41682A10510320. Search in Google Scholar

Jackson P., Nowell K. (2008 b). Panthera tigris ssp. sondaica. The IUCN Red List of Threatened Species: e.T41681A10509194. Search in Google Scholar

Jackson P., Nowell K. (2011). Panthera tigris ssp. virgata. The IUCN Red List of Threatened Species: e.T41505A10480967. Search in Google Scholar

Kallingappa P.K., Turner P.M., Eichenlaub M.P., Green A.L., Oback F.C., Chibnall A.M., Wells D.N., Oback B. (2016). Quiescence loosens epigenetic constraints in bovine somatic cells and improves their reprogramming into totipotency. Biol. Reprod., 16: 1–10. Search in Google Scholar

Khammanit R., Chantakru S., Kitiyanant Y., Saikhun J. (2008). Effect of serum starvation and chemical inhibitors on cellcycle synchronization of canine dermal fibroblasts. Theriogenology, 70: 27–34. Search in Google Scholar

Kitchener A.C., Breitenmoser-Würsten C., Eizirik E., Gentry A., Werdelin L., Wilting A., Yamaguchi N., Abramov A.V., Christiansen P., Driscoll C., Duckworth J.W., Johnson W., Luo S.J., Meijaard E., O’Donoghue P., Sanderson J., Seymour K., Bruford M., Groves C., Hoffmann M., Nowell K., Timmons Z., Tobe S. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News, Special Issue,11, 80 pp. Search in Google Scholar

Kochan J., Niżański W., Moreira N., Cubas da Silva Z., Nowak A., Prochowska S., Partyka A., Młodawska W., Skotnicki J. (2019). ARTs in wild felid conservation programmes in Poland and in the world. J. Vet. Res., 63: 1–8. Search in Google Scholar

Kues W.A., Anger M., Carnwath J.W., Paul D., Motlik J., Niemann H. (2000). Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod., 62: 412–419. Search in Google Scholar

Levine E.M., Becker Y., Boone C.W., Eagle H. (1965). Contact inhibition, macromolecular synthesis, and polyribosomes in cultured human diploid fibroblasts. Proc. Natl. Acad. Sci. USA, 53: 350–356. Search in Google Scholar

Loi P., Iuso D., Czernik M., Ogura A. (2016). A New, dynamic era for somatic cell nuclear transfer? Trends Biotechnol., 34: 791–797. Search in Google Scholar

Liu C., Guo Y., Guan W., Ma Y., Zhang H.H., Tang X. (2008). Establishment and biological characteristics of Luxi cattle fibroblast bank. Tissue Cell., 40: 417–424. Search in Google Scholar

Ma L., Liu X., Wang F., He X., Chen S., Li W. (2015). Different donor cell culture methods can influence the developmental ability of cloned sheep embryos. PLoS One, 10: e0135344. Search in Google Scholar

Miranda M.S., Bressan F.F., Zecchin K.G., Vercesi A.E., Mesquita L.G., Merighe G.K., King W.A., Ohashi O.M., Pimentel J.R., Perecin F., Meirelles F.V. (2009). Serum-starved apoptotic fibroblasts reduce blastocyst production but enable development to term after SCNT in cattle. Cloning Stem Cells, 11: 565–573. Search in Google Scholar

Młodawska W., Mrowiec P., Grabowska B., Waliszewska J., Kochan J., Nowak N., Migdał A., Niżański W., Prochowska S., Partyka A., Pałys M., Grega T., Skotnicki J. (2019). Determining influence of culture media and dose-dependent supplementation with basic fibroblast growth factor on the ex vivo proliferative activity of domestic cat dermal fibroblasts in terms of their suitability for cell banking and somatic cell cloning of felids. Ann. Anim. Sci., 19: 359–372. Search in Google Scholar

Park E.S., Hwang W.S., Jang G., Cho J.K., Kang S.K., Lee B.C., Han J.Y., Lim J.M. (2004). Incidence of apoptosis in clone embryos and improved development by the treatment of donor somatic cells with putative apoptosis inhibitors. Mol. Reprod. Dev., 68: 65–71. Search in Google Scholar

Pierpaoli M., Birò Z.S., Herrmann M., Hupe K., Fernandes M., Ragni B., Szemethy L., Randi E. (2003). Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol. Ecol., 12: 2585–2598. Search in Google Scholar

Prochowska S., Niżański W., Partyka A., Kochan J., Młodawska W., Nowak A., Migdał A., Skotnicki J., Grega T., Pałys M. (2017). Selected methods of in vitro embryo production in felids – a review. Anim. Sci. Pap. Rep., 35: 361–377. Search in Google Scholar

Rideout W.M. 3rd., Eggan K., Jaenisch R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science, 293: 1093–1098. Search in Google Scholar

Ross S., Barashkova A., Dhendup T., Munkhtsog B., Smelansky I., Barclay D., Moqanaki E. (2020). Otocolobus manul (errata version published in 2020). The IUCN Red List of Threatened Species, e.T15640A180145377. Search in Google Scholar

Samiec M., Skrzyszowska M. (2005). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: a review. Czech J. Anim. Sci., 50: 185–195. Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 a). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015 Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 b). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227. Search in Google Scholar

Samiec M., Skrzyszowska M. (2021). Extranuclear inheritance of mitochondrial genome and epigenetic reprogrammability of chromosomal telomeres in somatic cell cloning of mammals. Int. J. Mol. Sci., 22: 3099. Search in Google Scholar

Samiec M., Skrzyszowska M., Bochenek M. (2013 a). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.10.2478/aoas-2013-0049 Search in Google Scholar

Samiec M., Skrzyszowska M., Opiela J. (2013 b). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.10.2478/aoas-2013-0009 Search in Google Scholar

Shin J.S., Hong S.W., Lee S.L., Kim T.H., Park I.C., An S.K., Lee W.K., Lim J.S., Kim K.I., Yang Y., Lee S.S., Jin D.H., Lee M.S. (2008). Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and CDK4 in SK-OV-3 cells. Int. J. Oncol., 32: 435–439. Search in Google Scholar

Shin T.Y., Kraemer D., Pryor J., Liu L., Rugila J., Kowe L., Buck S., Murphy K., Lyons L., Westhusin M. (2002). A cat cloned by nuclear transplantation. Nature, 415: 859. Search in Google Scholar

Skrzyszowska M., Samiec M. (2021). Generating cloned goats by somatic cell nuclear transfer – molecular determinants and application to transgenics and biomedicine. Int. J. Mol. Sci., 22: 3099. Search in Google Scholar

Skrzyszowska M., Katska L., Ryńska B., Kania G., Smorag Z., Pieńkowski M. (2002). In vitro developmental competence of domestic cat embryos after somatic cloning: a preliminary report. Theriogenology, 58: 1615–1621. Search in Google Scholar

Swat A., Dolado I., Rojas J.M., Nebreda A.R. (2009). Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol. Cell. Biol., 29: 3332–3343. Search in Google Scholar

Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810. Search in Google Scholar

Wittayarat M., Thongphakdee A., Saikhun K., Chatdarong K., Otoi T., Techakumphu M. (2013). Cell cycle synchronization of skin fibroblast cells in four species of family Felidae. Reprod. Domest. Anim., 48: 305–310. Search in Google Scholar

Veraguas D., Gallegos P.F., Castro F.O., Rodriguez-Alvarez L. (2017). Cell cycle synchronization and analysis of apoptosis-related gene in skin fibroblasts from domestic cat (Felis silvestris catus) and kodkod (Leopardus guigna). Reprod. Dom. Anim., 52: 881–889. Search in Google Scholar

Veraguas D., Aguilera C., Echeverry D., Saez-Ruiz D., Castro F.O., Rodriguez-Alvarez L. (2020). Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology, 158: 148–157. Search in Google Scholar

Yin X.J., Lee H.S., Lee Y.H., Seo Y.I., Jeon S.J., Choi E.G., Cho S.J., Cho S.G., Min W., Kang S.K., Hwang W.S., Kong I.K. (2005). Cats cloned from fetal and adult somatic cells by nuclear transfer. Reproduction, 129: 245–249. Search in Google Scholar

Yin X.J., Lee H.S., Kim L.H., Shin H.D., Kim N.H., Kong I.K. (2007). Effect of serum starvation on the efficiency of nuclear transfer using odd-eyed white cat fibroblasts. Theriogenology, 67: 816–823. Search in Google Scholar

Yu Y.S., Sun X.S., Jiang H.N., Han Y., Zhao C.B., Tan J.H. (2003). Studies of the cell cycle of in vitro cultured skin fibroblasts in goats: work in progress. Theriogenology, 59: 1277–1289. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo