1. bookVolumen 22 (2022): Heft 3 (July 2022)
25 Nov 2011
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Nanowater enhances cryoprotective properties of glycerol-containing extenders used for ram semen freezing: A preliminary study spanning laboratory testing

Online veröffentlicht: 19 Jul 2022
Volumen & Heft: Volumen 22 (2022) - Heft 3 (July 2022)
Seitenbereich: 945 - 952
Eingereicht: 03 May 2021
Akzeptiert: 09 Dec 2021
25 Nov 2011
4 Hefte pro Jahr

It has been suggested that nanowater (NW-water declustered in the cold plasma generator and characterized by a low freezing point and high diffusivity) could improve ram semen quality after freezing in glycerol-containing extenders. Eighteen ejaculates from six Olkuska rams were divided into six equal portions each, and then diluted (800×106 spermatozoa/ml) and frozen in the fructose-skimmed milk-egg yolk Kareta extenders containing 3% or 7% of glycerol. The extenders were prepared with deionized water (DW-3% and DW-7%) or NW declustered for 15 min (NW15’) or 30 min (NW30’). Post-thaw sperm motility, proportions of sperm defects and percentages of apoptotic, necrotic, and live spermatozoa were determined. The proportion of spermatozoa with midpiece defects was lower (P<0.05) in NW15’-3% compared with DW-3%. Sperm progressive motility was greater (P<0.05) for spermatozoa cryopreserved in both NW30’ (NW30’-3%/7%) extenders compared with their respective controls (DW30’-3%/7%). The proportion of necrotic spermatozoa 1 h after thawing was lower (P<0.05) in NW30’-7% compared with DW-7%, whereas the proportion of live cells detected immediately and 1 h after thawing was greater (P<0.05) in NW30’-7% than in DW-7%. In summary, NW enhanced cryoprotective effects of glycerol-containing extenders with an increase in sperm viability being greater with 7% than 3% of glycerol. Different declustering times appear to alter NW properties. These observations merit future studies of the utility of NW for semen cryopreservation in rams and other mammalian species. The specific mechanisms whereby NW ameliorates the quality of frozen-thawed ram spermatozoa remain to be elucidated.

Ali M. (2015). Comparative study between drinking water and distilled water as solvents for extender of buck semen. Int. J. Curr. Res., 7: 24405–24407. Search in Google Scholar

Almlid T., Johnson L.A. (1988). Effects of glycerol concentration, equilibration time and temperature of glycerol addition on post-thaw viability of boar spermatozoa frozen in straws. J. Anim. Sci., 66: 2899–2905. Search in Google Scholar

Alvarez J.G., Storey B.T. (1993). Evidence that membrane stress contributes more than lipid peroxidation to sublethal cryodamage in cryopreserved human sperm: Glycerol and other polyols as sole cryoprotectant. J. Androl., 14: 199–209. Search in Google Scholar

Anzar M., He L., Buhr M.M., Kroetsch T.G., Pauls K.P. (2002). Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility. Biol. Reprod., 66: 354–360. Search in Google Scholar

Bailey J.L., Lessard C., Jacques J., Brèque C., Dobrinski I., Zeng W., Galantino-Homer H.L. (2008). Cryopreservation of boar semen and its future importance to the industry. Theriogenology, 70: 1251–1259. Search in Google Scholar

Ball B.A., Vo A. (2001). Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. J. Androl., 22: 1061–1069. Search in Google Scholar

Behera S., Harshan H.M., Bhai K.L., Ghosh K.N.A. (2015). Effect of cholesterol supplementation on cryosurvival of goat spermatozoa. Vet. World, 8: 1386–1391. Search in Google Scholar

Białopiotrowicz T., Ciesielski W., Domański J., Doskocz M., Khachatryan K., Fiedorowicz M., Graz K., Kołoczek H., Kozak A., Oszczęda Z., Tomasik P. (2016). Structure and physicochemical properties of water treated with low-temperature low-frequency glow plasma. Curr. Phys. Chem., 6: 312–320. Search in Google Scholar

Bröll D., Kaul C., Krämer A., Krammer P., Richter T., Jung M., Vogel H., Zehner P. (1999). Chemistry in supercritical water. Angew. Chem. Int. Edit., 38: 2998–3014. Search in Google Scholar

Bronicka A., Dembiński Z. (1999). Current criteria and conditions influencing the quality of boar semen (in Polish). Med. Weter., 55: 436–439. Search in Google Scholar

Chian R.C., Quinn P. (2010). Fertility cryopreservation. Cambridge University Press, New York.10.1017/CBO9780511730207 Search in Google Scholar

Ciereszko A., Dąbrowski K. (1994). Relationship between biochemical constituents of fish semen and fertility: The effect of short-term storage. Fish Physiol. Biochem., 12: 357–367. Search in Google Scholar

Ciereszko A., Strzeżek J. (1989). Isolation and characteristics of aspartate aminotransferase from boar spermatozoa. Int. J. Biochem., 1: 1343–1351. Search in Google Scholar

Corteel J.M. (1980). Effets du plasma séminal sur la survie et la fertilité des spermatozoïdes conservés in vitro (in French). Reprod. Nutr. Dev., 20: 1111–1123. Search in Google Scholar

Curry M.R., Millar J.D., Watson P.F. (1994). Calculated optimal cooling rates for ram and human sperm cryopreservation fail to conform with empirical observations. Biol. Reprod., 51: 1014–1021. Search in Google Scholar

Davidson A.F., Glasscock C., McClanahan D.R., Benson H.D., Higgins A.Z. (2015). Toxicity minimized cryoprotectant addition and removal procedures for adherent endothelial cells. PLOS ONE, https://doi.org/10.1371/journal.pone.014282810.1371/journal.pone.0142828 Search in Google Scholar

Debenedetti P.G., Petsche I.B., Mohamed R.S. (1989). Clustering in supercritical mixtures: Theory, applications and simulations. Fluid Phase Equilib., 52: 347–356. Search in Google Scholar

Duru N.K., Morshedi M., Oehninger S. (2000). Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril., 74: 1200–1207. Search in Google Scholar

Elvidge D.G., Coop I.E. (1974). Effect of shearing on feed requirements of sheep. New Zeal. J. Exp. Agr., 2: 397–402. Search in Google Scholar

FAO (2012). Cryopreservation of animal genetic resources. FAO Animal Production and Health Guidelines, No. 12, Rome. Search in Google Scholar

Freshney R.I. (2009). Culture of animal cells: a manual of basic technique and specialized applications, 6th edition. Cochlear Implants International, Wiley-Blackwell, 346: 796. Search in Google Scholar

Garcia B.C., Ferrusola C.O., Aparicio I.M., Miro-Moran A., Rodriguez A.M., Bolanos J.M. G., Fernandez L.G., da Silva C.M.B., Rodriguez-Martinez H., Tapia J.A., Pena F.J. (2012). Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology, 7: 1280–1289. Search in Google Scholar

Grøndahl C., Grøndahl M.L., Hyttel P., Greve T. (1994). Acrosomal status in fresh and frozen/thawed stallion spermatozoa evaluated by scanning electron microscopy. Anat. Embryol., 190: 195–200. Search in Google Scholar

Hezavehei M., Sharafi M., Kouchesfahani H.M., Henkel R., Agarwal A., Esmaeili V., Shahverdi A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. RBMO, 37: 327–339. Search in Google Scholar

Holt W.V. (2000). Basic aspects of frozen storage of semen. Anim. Reprod. Sci., 62: 3–22. Jiang H., Sun S.X. (2013). Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J., 105: 6609–6619.10.1016/S0378-4320(00)00152-4 Search in Google Scholar

Kareta W., Pilch J., Wierzbowski S. (1972). Fertility of frozen ram semen diluted in citrate added to bull seminal plasma or not. Proc. 7th International Congress on Animal Reproduction & AI, Munich, Germany, 2: 1479–1485. Search in Google Scholar

Morris G.J. (2006). Rapidly cooled human sperm: No evidence of intracellular ice formation. Hum. Reprod., 21: 2075–2083. Search in Google Scholar

Muldrew K., McGann L.E. (1990). Mechanisms of intracellular ice formation. Biophys. J., 57: 525–532. Search in Google Scholar

Murawski M., Schwarz T., Grygier J., Patkowski K., Oszczęda Z., Jelkin I., Kosiek A., Gruszecki T.M., Szymanowska J., Skrzypek T., Zięba D.A., Bartlewski P.M. (2015). The utility of nanowater for ram semen cryopreservation. Exp. Biol. Med., 240: 611–617. Search in Google Scholar

Mystkowska J., Dąbrowski J.R., Kowal K., Niemirowicz K., Car H. (2013). Physical and chemical properties of deionized water and saline treated with low-pressure and low-temperature plasma. Search in Google Scholar

Chemik, 67: 722–724. Neild D.M., Gadella B.M., Chaves M.G., Miragaya M.H., Colenbrander B., Aguero A. (2003). Membrane changes during different stages of a freeze-thaw protocol for equine semen cryopreservation. Theriogenology, 59: 1693–1705. Search in Google Scholar

Niemirowicz K., Car H. (2001). Nanonośniki jako nowoczesne transportery w kontrolowanym dostarczaniu leków (in Polish). Chemik Nauka-Technika-Rynek, 66: 868–881. Search in Google Scholar

Nikolopoulou M., Soucek D.A., Vary J.C. (1986). Lipid composition of the membrane released after an in vitro acrosome reaction of epididymal boar sperm. Lipids, 21: 566–570. Search in Google Scholar

Nosal P., Murawski M., Bartlewski P.M., Skalska M., Kowal J., Zięba D. (2016). Assessing the usefulness of mineral licks containing herbal extracts with anti-parasitic properties for the control of gastrointestinal helminths in grazing sheep – a field trial. Helminthologia, 53: 180–185. Search in Google Scholar

Parks J.E. (1997). Hypothermia and mammalian gametes. In: Reproductive tissue banking: scientific principles, A.M. Karow, J.K. Crister, (eds). Academic Press, USA, pp. 229–261.10.1016/B978-012399770-8/50006-X Search in Google Scholar

Pena F.J., Johannisson A., Wallgren M., Rodríguez-Martínez H. (2003). Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay: A new method of evaluating sperm membrane integrity. Theriogenology, 60: 677–689. Search in Google Scholar

Rocha A., Oliveira E., Vilhena M.J., Diaz J., Sousa M. (2006). A novel apical midpiece defect in the spermatozoa of a bull without an apparent decrease in motility and fertility: A case study. Theriogenology, 66: 913–922. Search in Google Scholar

Rusanov V.D., Fridman A.A. (1978). Possible destruction of large molecules in water by cold-plasma flow. Russ. J. Phys. Chem. A, 52: 92–96. Search in Google Scholar

Salamon S., Maxwell W.M.C. (2000). Storage of ram semen. Anim. Reprod. Sci., 62: 77–111. Search in Google Scholar

Samper J.C., Morris C.A. (1998). Current methods for stallion semen cryopreservation: a survey. Theriogenology, 49: 895–903. Search in Google Scholar

Shinitzky M., Barenholz Y. (1974). Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem., 249: 2652–2657. Search in Google Scholar

Shipley C.F.B., Buckrell B., Mylne M.J.A., Pollard J., Hunton J.R. (2007). Artificial insemination and embryo transfer in sheep. In: Current Therapy in Large Animal Theriogenology, 2nd ed., R.S. Younquist, W.R. Threlfall (eds). Saunders Elsevier, USA, pp. 629–641.10.1016/B978-072169323-1.50089-1 Search in Google Scholar

Strzeżek J., Kordan W. (2003). Effects of decondensing agents on chromatin stability of boar spermatozoa – radioisotopic study. Anim. Sci. Pap. Rep., 21: 167–181. Search in Google Scholar

Szymanowicz J., Schwarz T., Murawski M., Małopolska M., Oszczęda Z., Tuz R., Nowicki J., Bartlewski P.M. (2019). Storage of boar semen at 16–18°C in the long-term commercial extender prepared with deionized water or nanowater. Anim. Reprod., 16: 864–870. Search in Google Scholar

Takamura K., Fisher H., Morrow N.R. (2012). Physical properties of aqueous glycerol solutions. J. Pet. Sci. Eng., 98–99: 50–60. Search in Google Scholar

Trzcińska M. (2006). Proces apoptozy w plemnikach ssaków (in Polish). Biotechnologia, 1: 82–89. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo