Uneingeschränkter Zugang

Production of triploid, doubled haploid (DH) and meiogynogenetic brook trout (Salvelinus fontinalis) – efficiency and development of body deformities


Zitieren

Angers B., Bernatchez L., Angers A., Desgroseillers L. (1995). Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol., 47: 177–185.Search in Google Scholar

Araki K., Okamoto H., Graveson A.C., Nakayama I., Nagoya H. (2001). Analysis of haploid development based on expression patterns of developmental genes in the medaka Oryzias latipes. Dev. Growth Differ, 43: 591–599.Search in Google Scholar

Aulstad D., Kittelsen A. (1971). Abnormal body curvatures of rainbow trout (Salmo gairdneri) inbred fry. J. Fish. Board Canada, 28: 1918–1920.Search in Google Scholar

Babiak I., Dobosz S., Goryczko K., Kuzminski H., Brzuzan P., Ciesielski S. (2002). Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology, 57: 1229–1249.Search in Google Scholar

Billard R. (1977). Utilisation d’un système tris-glycocolle pour tamponner le dilueur d’insémination pour truite. Bull. Français Piscic., 264: 102–112.Search in Google Scholar

Blecha M., Flajshans M., Lebeda I., Kristan J., Svacina P., Policar T. (2016). Triploidisation of pikeperch (Sander lucioperca), first success. Aquaculture, 462: 115–117.Search in Google Scholar

Boglione C., Gisbert E., Gavaia P., Witten P.E., Moren M., Koumoundouros G. (2013). Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev. Aquacult., 5: 121–167.Search in Google Scholar

Boulanger Y. (1991). Performance comparison of all-female, diploid and triploid brook trout. Can. Tech. Rep. Fish. Aquat. Sci., 178: 111–119.Search in Google Scholar

Cherfas N.B., Gomelsky B., Ben-Dom N., Peretz Y., Hulata G. (1994). Assessment of triploid common carp (Cyprinus carpio) for culture. Aquaculture, 127: 11–18.Search in Google Scholar

Chourrout D. (1984). Pressure induced retention of 2nd polar body and suppression of 1st cleavage in rainbow trout production of all triploids all tetraploids and heterozygous and homozygous diploid gynogenetics. Aquaculture, 36: 111–126.Search in Google Scholar

Christiansen H.E., Lang M.R., Pace J.M., Parichy D.M. (2009). Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and postembryonic axial growth. PLoS One, 4(12): e8481.Search in Google Scholar

Corley-Smith G.E., Lim C.J., Brandhorst B.P. (1996). Production of androgenetic zebrafish (Danio rerio). Genetics, 142: 1265–1276.Search in Google Scholar

Cotter D., O’Donovan V., Drumm A., Roche N., Ling E.N., Wilkins N.P. (2002). Comparison of freshwater and marine performances of all-female diploid and triploid Atlantic salmon (Salmo salar L.). Aquac. Res., 33: 43–53.Search in Google Scholar

Diekmann M., Nagel R. (2005). Different survival rates in zebrafish (Danio rerio) from different origins. J. Appl. Ichthyol., 21: 451–454.Search in Google Scholar

Dorson M., Torhy C., de Kinkelin P. (1994). Viral haemorrhagic septicaemia virus multiplication and interferon production in rainbow trout and in rainbow trout × brook trout hybrids. Fish Shellfish Immun., 4: 369–381.Search in Google Scholar

Dunham R.A. (2004). Aquaculture and Fisheries Biotechnology: Genetic Approaches. Wallingford, UK, CABI Publishing.10.1079/9780851995960.0000Search in Google Scholar

Fjelldal P.G., Hansen T. (2010). Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts. Aquaculture, 309: 131–136.Search in Google Scholar

Fjelldal P.G., Hansen T.J., Lock E.-J., Wargelius A., Fraser T.W.K., Sambraus F., El Mowafi A., Albrektsen S., Waagbø R., Ørnsrud R. (2016). Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salar L.). Aquacult. Nutr., 22: 72–90.Search in Google Scholar

Fraser T.W., Hansen T., Skjæraasen J.E., Mayer I., Sambraus F., Fjelldal P.G. (2013). The effect of triploidy on the culture performance, deformity prevalence, and heart morphology in Atlantic salmon. Aquaculture, 416: 55–264.Search in Google Scholar

Galbreath P.F., Samples B.L. (2000). Optimization of thermal shock protocols for induction of triploidy in brook trout. N. Am. J. Aquacult., 62: 249–259.Search in Google Scholar

Gorman K.F., Christians J.K., Parent J., Ahmadi R., Weigel D., Dreyer C., Breden F. (2011). A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genetics, 12: 1.Search in Google Scholar

Grimmett S.G., Chalmers H.J., Wolf J.C., Bowser P.R. (2011). Spinal deformity in triploid grass carp Ctenopharyngodon idella (Valenciennes). J. Fish Dis., 34: 217–225.Search in Google Scholar

Guo L., Yamashita H., Kou I., Takimoto A., Meguro-Horike M., Horike S., Sakuma T., Miura S., Adachi T., Yamamoto T., Ikegawa S., Hiraki Y., Shukunami C. (2016). Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet., 12(1): e1005802.Search in Google Scholar

Hou J., Fujimoto T., Saito T., Yamaha E., Arai K. (2015). Generation of clonal zebrafish line by androgenesis without egg irradiation. Sci. Rep., 5: 13346.Search in Google Scholar

Iwasaki Y., Nishiki I., Nakamura Y., Yasuike M., Kai W., Nomura K., Yoshida K., Nomura Y., Fujiwara A., Kobayashi K., Ototake M. (2016). Effective de novo assembly of fish genome using haploid larvae. Gene, 576: 644–649.Search in Google Scholar

Jagiełło K., Zalewski T., Dobosz S., Michalik O., Ocalewicz K. (2017). High rate of deformed larvae among gynogenetic brown trout (Salmo trutta m. fario) Doubled Haploids. Biomed Res. Int., doi.org/10.1155/2017/2975187Search in Google Scholar

Jagiełło K., Dobosz S., Zalewski T., Polonis M., Ocalewicz K. (2018). Developmental competence of eggs produced by rainbow trout Doubled Haploids (DHs) and generation of the clonal lines. Reprod. Domest. Anim., 53: 1176–1183.Search in Google Scholar

Ji P., Liu G., Xu J., Wang X., Li J., Zhao Z., Zhang X., Zhang Y., Xu P., Sun X. (2012). Characterization of common carp transcriptome: sequencing, de novo assembly, annotation and comparative genomics. PloS One, 7: e35152.Search in Google Scholar

Kobayashi T., Ide A., Hiasa T., Fushiki S., Ueno K. (1994). Production of cloned amago salmon Oncorhynchus rhodurus. Fisheries Sci., 60: 275–281.Search in Google Scholar

Koenig M.K., Kozfkay J.R., Meyer K.A., Schill D.J. (2011). Performance of diploid and triploid rainbow trout stocked in Idaho alpine lakes. N. Am. J. Fish. Manag., 31: 124–133.Search in Google Scholar

Komen H., Thorgaard G.H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture, 269: 150–173.Search in Google Scholar

Maxime V. (2008). The physiology of triploid fish: current knowledge and comparisons with diploid fish. Fish Fish., 9: 67–78.Search in Google Scholar

Mc Cormick S.D., Naiman R.J. (1984). Osmoregulation in the brook trout, Salvelinus fontinalis– II. Effects of size, age and photoperiod on seawater survival and ionic regulation. Comp. Biochem. Phys. A., 79: 17–28.Search in Google Scholar

Michalik O., Kowalski R.K., Judycka S., Rożyński R., Dobosz S., Ocalewicz K. (2016). Androgenetic development of X- and Y-chromosome bearing haploid rainbow trout embryos. Theriogenology, 86: 1054–1060.Search in Google Scholar

Morishima K., Horie S., Yamaha E., Arai K. (2002). A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting. Zool. Sci., 19: 565–575.Search in Google Scholar

Nam Y.K., Park I.-S., Kim D.S. (2004). Triploid hybridization of fast-growing transgenic mud loach Misgurnus mizolepis male to cyprinid loach Misgurnus anguillicaudatus female: the first performance study on growth and reproduction of transgenic polyploid hybrid fish. Aquaculture, 231: 559–572.Search in Google Scholar

O’Flynn F.M., Mc Geachy S.A., Friars G.W., Benfey T.J., Bailey J.K. (1997). Comparisons of cultured triploid and diploid Atlantic salmon (Salmo salar L.). ICES J. Mar. Sci., 54: 1160–1165.Search in Google Scholar

Ocalewicz K., Sliwinska A., Jankun M. (2004). Autosomal localization of interstitial telomeric sites (ITS) in brook trout, Salvelinus fontinalis (Pisces, Salmonidae). Cytogenet. Genome Res., 105: 79–82.Search in Google Scholar

Ocalewicz K., Dobosz S., Kuzminski H., Nowosad J., Goryczko K. (2010). Chromosome rearrangements and survival of androgenetic rainbow trout (Oncorhynchus mykiss). J Appl. Genet., 51: 309–317.Search in Google Scholar

Ocalewicz K., Kuzminski H., Pomianowski K., Dobosz S. (2013). Induction of androgenetic development of the brook charr (Salvelinus fontinalis) × Arctic charr (Salvelinus alpinus) hybrids in eggs derived from the parental species. Reprod. Biol., 13: 105–112.Search in Google Scholar

Opstad I., Gunnar P., Karlsen Ø., Thorsen A., Hansen T.J., Lasse G. (2013). The effect of triploidization of Atlantic cod (Gadus morhua L.) on survival, growth and deformities during early life stages. Aquaculture, 388: 54–59.Search in Google Scholar

Pandian T.J., Koteeswaran R. (1998). Ploidy induction and sex control in fish. Hydrobiologia, 384: 167–243.Search in Google Scholar

Paschos I., Natsis L., Nathanailides C., Kagalou I., Kolettas E. (2001). Induction of gynogenesis and androgenesis in goldfish Carassius auratus (var. oranda). Reprod. Domest. Anim., 198: 195–198.Search in Google Scholar

Perry G.M.L., King T.L., St.-Cyr J., Valcourt M., Bernatchez L. (2005). Isolation and cross-familial amplification of 41 microsatellites for the brook charr (Salvelinus fontinalis). Mol. Ecol. Notes, 5: 346–351.Search in Google Scholar

Piferrer F., Beaumont A., Falguière J.C., Flajšhans M., Haffray P., Colombo L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture, 293: 125–156.Search in Google Scholar

Polonis M., Fujimoto T., Dobosz S., Zalewski T., Ocalewicz K. (2018). Genome incompatibility between rainbow trout (Oncorhynchus mykiss) and sea trout (Salmo trutta) and induction of the interspecies gynogenesis. J. Appl. Genetics, 59: 91–97.Search in Google Scholar

Razak S.A., Hwang G.L., Rahman M.A., Maclean N. (1999). Growth performance and gonadal development of growth enhanced transgenic tilapia Oreochromis niloticus (L.) following heatshock- induced triploidy. Mar. Biotechnol., 1: 533–544.Search in Google Scholar

Sadler J., Pankhurst P.M., King H.R. (2001). High prevalence of skeletal deformity and reduced gill surface area in triploid Atlantic salmon (Salmo salar L.). Aquaculture, 198: 369–386.Search in Google Scholar

Shirak A., Palti Y., Bern O., Kocher T.D., Gootwine E., Seroussi E., Avtalion R.R. (2012). A deleterious effect associated with UNH159 is attenuated in twin embryos of an inbred line of blue tilapia Oreochromis aureus. J. Fish Biol., 82: 42–53.Search in Google Scholar

Solar I.I., Donaldson E.M., Hunter G.A. (1984). Induction of triploidy in rainbow trout (Salmo gairdneri Richardson) by heat shock, and investigation of early growth. Aquaculture, 42: 57–67.Search in Google Scholar

Strüssmann C.A., Choon N.B., Takashima F., Oshiro T. (1993). Triploidy induction in an Atherinid fish, the pejerrey (Odontesthes bonariensis). Progress Fish Cult., 55: 83–89.Search in Google Scholar

Varadaraj K. (1990). Production of diploid Oreochromis mossambicus gynogens using heterologous sperm of Cyprinus carpio. Indian J. Exp. Biol., 28: 701–705.Search in Google Scholar

Varadaraj K., Pandian T.J. (1990). Production of all-female sterile-triploid Oreochromis mossambicus. Aquaculture, 84: 117–123.Search in Google Scholar

Weber G.M., Hostuttler M.A., Cleveland B.M., Timothy D. (2014). Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture, 433: 85–93.Search in Google Scholar

Wiellette E., Grinblat Y., Austen M., Hirsinger E., Amsterdam A., Walker C., Westerfield M., Sive H. (2004). Combined haploid and insertional mutation screen in the zebrafish. Genesis, 40: 231–240.Search in Google Scholar

Yamaha E., Otani S., Minami A., Arai K. (2002). Dorso-ventral axis perturbation in goldfish embryos caused by heat- and pressure-shock treatments for. Fish Sci., 68: 313–319.Search in Google Scholar

Yano A., Nicol B., Jouanno E., Quillet E., Fostier A., Guyomard R., Guiguen Y. (2013). The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol. Appl., 6: 486–496.Search in Google Scholar

Yi M., Hong N., Hong Y. (2009). Generation of medaka fish haploid embryonic stem cells. Science, 326: 430–433.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin