Uneingeschränkter Zugang

Feeder loss estimation of transformer in long-short memory network, based on FCM clustering

, , , , , , , ,  und   
24. Sept. 2025

Zitieren
COVER HERUNTERLADEN

Figure 1.

Method flowchart
Method flowchart

Figure 2.

Recurrent Neural Network Architecture for Long Short Term Memory Networks
Recurrent Neural Network Architecture for Long Short Term Memory Networks

Figure 3.

Multi head Attention Structure Diagram
Multi head Attention Structure Diagram

Figure 4.

Transformer Model for Long Short Term Memory
Transformer Model for Long Short Term Memory

Figure 5.

Distribution of feeder line loss rate error (First category)
Distribution of feeder line loss rate error (First category)

Figure 6.

Distribution of feeder line loss rate error (Second category)
Distribution of feeder line loss rate error (Second category)

Figure 7.

Distribution of feeder line loss rate error (Third category)
Distribution of feeder line loss rate error (Third category)

Evaluation System of Line Loss Rate Index

Dimension Index
Line characteristics Line current carrying capacity
Cable conversion rate
Capacity of distribution transform
Power supply radius
Operation parameter Average electricity consumption
Maximum load rate
Annual maximum current
Management level Meter reading accuracy
Equipment aging rate

Comparison of Line Loss Rate Estimation Errors

Model First category Second category Third category
MAE RMSE MAE RMSE MAE RMSE
GBDT 0.358 0.519 0.297 0.435 0.319 0.428
AdaBoost 0.358 0.506 0.346 0.437 0.348 0.432
XGBoost 0.361 0.487 0.314 0.469 0.305 0.371
WS 0.347 0.472 0.281 0.396 0.324 0.409
DEOW 0.334 0.493 0.276 0.408 0.351 0.478
Proposed algorithm 0.309 0.426 0.268 0.375 0.283 0.365

Comparison of Estimation Errors of Different Algorithms

Method First category Second category Third category
MAE RMSE MAE RMSE MAE RMSE
Reference [26] 0.365 0.478 0.296 0.396 0.317 0.396
Reference [27] 0.359 0.468 0.287 0.387 0.328 0.413
Proposed algorithm 0.317 0.446 0.273 0.371 0.287 0.375
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere