Uneingeschränkter Zugang

The Formation and Propagation of Soliton Wave Profiles for the Shynaray-IIa Equation

, , , ,  und   
31. März 2025

Zitieren
COVER HERUNTERLADEN

Wazwaz AM. Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. Applied Mathematics and Computation. 2006;182(1):283–300. WazwazAM Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method Applied Mathematics and Computation 2006 182 1 283 300 Search in Google Scholar

Seadawy AR. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus. 2017;132:29. https://doi.org/10.1140/epjp/i2017-11313-4. SeadawyAR Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves Eur. Phys. J. Plus. 2017 132 29 https://doi.org/10.1140/epjp/i2017-11313-4. Search in Google Scholar

Akram U, Seadawy AR, Rizvi STR, Younis M, Althobaiti S, Sayed S. Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves. Results in Physics. 2021;20:103725. https://doi.org/10.1016/j.rinp.2020.103725 AkramU SeadawyAR RizviSTR YounisM AlthobaitiS SayedS Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves Results in Physics. 2021 20 103725 https://doi.org/10.1016/j.rinp.2020.103725 Search in Google Scholar

Rizvi STR, Kashif A, Marwa A. Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik. 2020;204:164181. https://doi.org/10.1016/j.ijleo.2020.164181 RizviSTR KashifA MarwaA Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method Optik. 2020 204 164181 https://doi.org/10.1016/j.ijleo.2020.164181 Search in Google Scholar

Seadawy AR. New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Computers& Mathematics with Applications. 2011; 62(10):2011;3741–3755. https://doi.org/10.1016/j.camwa.2011.09.023 SeadawyAR New exact solutions for the KdV equation with higher order nonlinearity by using the variational method Computers& Mathematics with Applications 2011 62 10 2011; 3741 3755 https://doi.org/10.1016/j.camwa.2011.09.023 Search in Google Scholar

Asghar A, Seadawy AR, Dianchen L. Soliton solutions of the non-linear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik. 2017; 145;79–88. https://doi.org/10.1016/j.ijleo.2017.07.016 AsgharA SeadawyAR DianchenL Soliton solutions of the non-linear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis Optik 2017 145 79 88 https://doi.org/10.1016/j.ijleo.2017.07.016 Search in Google Scholar

Arshad M, Seadawy AR, Dianchen L. Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrö-dinger equation and its stability. Optik. 2017;138;40–49. https://doi.org/10.1016/j.ijleo.2017.03.005 ArshadM SeadawyAR DianchenL Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrö-dinger equation and its stability Optik 2017 138 40 49 https://doi.org/10.1016/j.ijleo.2017.03.005 Search in Google Scholar

Arnous AH, Seadawy AR, Alqahtani RT, Biswas A. Optical solitons with complex Ginzburg–Landau equation by modified simple equation method. Optik. 2017;144:475–480. https://doi.org/10.1016/j.ijleo.2017.07.013 ArnousAH SeadawyAR AlqahtaniRT BiswasA Optical solitons with complex Ginzburg–Landau equation by modified simple equation method Optik 2017 144 475 480 https://doi.org/10.1016/j.ijleo.2017.07.013 Search in Google Scholar

Seadawy AR, El-Rashidy K. Traveling wave solutions for some coupled nonlinear evolution equations, Mathematical and Computer Modelling. 2013;57(5–6):1371–1379. https://doi.org/10.1016/j.mcm.2012.11.026 SeadawyAR El-RashidyK Traveling wave solutions for some coupled nonlinear evolution equations Mathematical and Computer Modelling 2013 57 5–6 1371 1379 https://doi.org/10.1016/j.mcm.2012.11.026 Search in Google Scholar

Younas U, Younis M, Seadawy AR, Rizvi STR, Althobaiti S, Sayed S. Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results in Physics. 2021,20;103766. https://doi.org/10.1016/j.rinp.2020.103766 YounasU YounisM SeadawyAR RizviSTR AlthobaitiS SayedS Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative Results in Physics 2021 20 103766 https://doi.org/10.1016/j.rinp.2020.103766 Search in Google Scholar

Bhrawy AH, Abdelkawy MA, Kumar S, Biswas A. Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type. Rom. J. Phys. 2013; 58(7–8):729–748. BhrawyAH AbdelkawyMA KumarS BiswasA Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type Rom. J. Phys. 2013 58 7–8 729 748 Search in Google Scholar

Ebadi G, Fard NY, Bhrawy AH, Kumar S, Triki H, Yildirim A, Biswas A. Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 2013; 65(1):27–62. EbadiG FardNY BhrawyAH KumarS TrikiH YildirimA BiswasA Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity Rom. Rep. Phys. 2013 65 1 27 62 Search in Google Scholar

Iqbal MA, Wang Y, Miah MM, Osman MS. Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal and Fractional. 2021; 6(1):4. IqbalMA WangY MiahMM OsmanMS Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions Fractal and Fractional 2021 6 1 4 Search in Google Scholar

Ali KK, Wazwaz AM, Osman MS. Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik. 2020; 208:164132. AliKK WazwazAM OsmanMS Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method Optik 2020 208 164132 Search in Google Scholar

Akinyemi L, Houwe A, Abbagari S, Wazwaz AM, Alshehri HM, Osman MS. Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik. 2023; 288: 171202. https://doi.org/10.1016/j.ijleo.2023.171202 AkinyemiL HouweA AbbagariS WazwazAM AlshehriHM OsmanMS Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber Optik 2023 288 171202 https://doi.org/10.1016/j.ijleo.2023.171202 Search in Google Scholar

Mani Rajan MS, Saravana Veni S, Wazwaz AM. Self-steepening nature and nonlinearity management of optical solitons with the influence of generalized external potentials. Opt Quant Electron. 2023; 55:703. https://doi.org/10.1007/s11082-023-04912-8 Mani RajanMS Saravana VeniS WazwazAM Self-steepening nature and nonlinearity management of optical solitons with the influence of generalized external potentials Opt Quant Electron 2023 55 703 https://doi.org/10.1007/s11082-023-04912-8 Search in Google Scholar

Jafari H, Tajadodi H, Baleanu D. Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. Journal of Computational and Nonlinear Dynamics. 2014;9(2): 021019. JafariH TajadodiH BaleanuD Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations Journal of Computational and Nonlinear Dynamics 2014 9 2 021019 Search in Google Scholar

Kumar S, Malik S, Rezazadeh H, Akinyemi L. The integrable Boussinesq equation and it’s breather, lump and soliton solutions. Nonlinear Dynamics; 2022;1–14. KumarS MalikS RezazadehH AkinyemiL The integrable Boussinesq equation and it’s breather, lump and soliton solutions Nonlinear Dynamics 2022 1 14 Search in Google Scholar

Kumar S, Kumar A., Samet B, Gómez-Aguilar JF, Osman MS. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos, Solitons & Fractals 2020; 141: 110321. KumarS KumarA. SametB Gómez-AguilarJF OsmanMS A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment Chaos, Solitons & Fractals 2020 141 110321 Search in Google Scholar

Khan MI, Asghar S, Sabi’u J. Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation. Optical and Quantum Electronics. 2022; 54: 734. KhanMI AsgharS Sabi’uJ Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation Optical and Quantum Electronics 2022 54 734 Search in Google Scholar

Osman MS. One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dynamics. 2019; 96(2):1491–1496. OsmanMS One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation Nonlinear Dynamics 2019 96 2 1491 1496 Search in Google Scholar

Osman MS, Rezazadeh H., Eslami M. Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. Nonlinear Engineering. 2016; 8(1):559–567. OsmanMS RezazadehH. EslamiM Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity Nonlinear Engineering 2016 8 1 559 567 Search in Google Scholar

Alquran M, Jarrah A. Jacobi elliptic function solutions for a two-mode KdV equation. J King Saud Univ Sci. 2019;31:485–9. https://doi.org/10.1016/j.jksus.2017.06.010 AlquranM JarrahA Jacobi elliptic function solutions for a two-mode KdV equation J King Saud Univ Sci 2019 31 485 9 https://doi.org/10.1016/j.jksus.2017.06.010 Search in Google Scholar

Jaradat HM, Syam M, Alquran M. A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions. Non-linear Dyn. 2017;90:371–7. https://doi.org/10.1007/s11071-017-3668-x JaradatHM SyamM AlquranM A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions Non-linear Dyn 2017 90 371 7 https://doi.org/10.1007/s11071-017-3668-x Search in Google Scholar

Alquran M, Jaradat HM, Syam MI. A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation. Nonlinear Dyn. 2018;91:1619–26. https://doi.org/10.1007/s11071-017-3968-1 AlquranM JaradatHM SyamMI A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation Nonlinear Dyn 2018 91 1619 26 https://doi.org/10.1007/s11071-017-3968-1 Search in Google Scholar

Jaradat HM, Awawdeh F, Al-Shara S, Alquran M, Momani S. Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media. Rom. J. Phys. 2015; 60:324–43. JaradatHM AwawdehF Al-SharaS AlquranM MomaniS Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media Rom. J. Phys. 2015 60 324 43 Search in Google Scholar

Syam M, Jaradat HM, Alquran M. A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dyn. 2017; 90:1363–71. https://doi.org/10.1007/s11071-017-3732-6 SyamM JaradatHM AlquranM A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods Nonlinear Dyn 2017 90 1363 71 https://doi.org/10.1007/s11071-017-3732-6 Search in Google Scholar

Alquran M, Jaradat HM, Al-Shara S, Awawdeh F. A new simplified bilinear method for the N-soliton solutions for a generalized F mKdV equation with time-dependent variable coefficients. Int J Nonlinear Sci Numer Simul. 2015;16:259–69. https://doi.org/10.1515/ijnsns-2014-0023 AlquranM JaradatHM Al-SharaS AwawdehF A new simplified bilinear method for the N-soliton solutions for a generalized F mKdV equation with time-dependent variable coefficients Int J Nonlinear Sci Numer Simul 2015 16 259 69 https://doi.org/10.1515/ijnsns-2014-0023 Search in Google Scholar

Rezazadeh H, Vahidi J, Zafar A, Bekir A. The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. Int J Nonlinear Sci Numer Simul. 2020; 21:249–57. https://doi.org/10.1515/ijnsns-2019-0064 RezazadehH VahidiJ ZafarA BekirA The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity Int J Nonlinear Sci Numer Simul 2020 21 249 57 https://doi.org/10.1515/ijnsns-2019-0064 Search in Google Scholar

Yépez-Martínez H, Gómez-Aguilar JF. Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. Waves Ran Comp Med. 2019;29:678–93. https://doi.org/10.1080/17455030.2018.1464233 Yépez-MartínezH Gómez-AguilarJF Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative Waves Ran Comp Med 2019 29 678 93 https://doi.org/10.1080/17455030.2018.1464233 Search in Google Scholar

Yépez-Martínez H, Gómez-Aguilar JF, Baleanu D. Beta-derivative and sub equation method applied to the optical solitons in medium with parabolic law nonlinearity and high order dispersion. Optik. 2018;155:357–65. https://doi.org/10.1016/j.ijleo.2017.10.104 Yépez-MartínezH Gómez-AguilarJF BaleanuD Beta-derivative and sub equation method applied to the optical solitons in medium with parabolic law nonlinearity and high order dispersion Optik 2018 155 357 65 https://doi.org/10.1016/j.ijleo.2017.10.104 Search in Google Scholar

Yépez-Martínez H, Gómez-Aguilar JF. M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers. Optical Quant Electron. 2019; 51:31. https://doi.org/10.1007/s11082-018-1740-5 Yépez-MartínezH Gómez-AguilarJF M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers Optical Quant Electron 2019 51 31 https://doi.org/10.1007/s11082-018-1740-5 Search in Google Scholar

Akinyemi L. Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solutions. Optik-International Journal for Light and Electron Optics. 2021;243;167477. AkinyemiL Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solutions Optik-International Journal for Light and Electron Optics 2021 243 167477 Search in Google Scholar

Kumar S, Mann N, Kharbanda H, Inc M. Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) system. Analysis and Mathematical Physics. 2023;13(3):40. KumarS MannN KharbandaH IncM Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) system Analysis and Mathematical Physics 2023 13 3 40 Search in Google Scholar

Kumar S, Mann N. A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled Schrödinger–Boussinesq equations. Optical and Quantum Electronics. 2023;55(8):723. KumarS MannN A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled Schrödinger–Boussinesq equations Optical and Quantum Electronics 2023 55 8 723 Search in Google Scholar

Kumar S, Rani S, Mann N. Diverse analytical wave solutions and dynamical behaviors of the new (2+1)-dimensional Sakovich equation emerging in fluid dynamics. The European Physical Journal Plus. 2022;137(11):1226. KumarS RaniS MannN Diverse analytical wave solutions and dynamical behaviors of the new (2+1)-dimensional Sakovich equation emerging in fluid dynamics The European Physical Journal Plus 2022 137 11 1226 Search in Google Scholar

Kumar S, Niwas M, Mann N. Abundant analytical closed-form solutions and various solitonic wave forms to the ZK-BBM and GZK-BBM equations in fluids and plasma physics. Partial Differential Equations in Applied Mathematics. 2021;4:100200. KumarS NiwasM MannN Abundant analytical closed-form solutions and various solitonic wave forms to the ZK-BBM and GZK-BBM equations in fluids and plasma physics Partial Differential Equations in Applied Mathematics. 2021 4 100200 Search in Google Scholar

Kumar S, Mann N. Abundant closed-form solutions of the (3+1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. Journal of Ocean Engineering and Science; 2022. KumarS MannN Abundant closed-form solutions of the (3+1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering Journal of Ocean Engineering and Science 2022 Search in Google Scholar

Rani S, Kumar S, Mann N. On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Optical and Quantum Electronics. 2023;55(8):731. RaniS KumarS MannN On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods Optical and Quantum Electronics 2023 55 8 731 Search in Google Scholar

Nonlaopon K, Mann N, Kumar S, Rezaei S, Abdou MA. A variety of closed-form solutions, Painlevé analysis, and solitary wave profiles for modified KdV–Zakharov–Kuznetsov equation in (3+1)-dimensions. Results in Physics. 2022;36:105394. NonlaoponK MannN KumarS RezaeiS AbdouMA A variety of closed-form solutions, Painlevé analysis, and solitary wave profiles for modified KdV–Zakharov–Kuznetsov equation in (3+1)-dimensions Results in Physics. 2022 36 105394 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik