Uneingeschränkter Zugang

The Formation and Propagation of Soliton Wave Profiles for the Shynaray-IIa Equation

, , , ,  und   
31. März 2025

Zitieren
COVER HERUNTERLADEN

INTRODUCTION

The Shynaray-IIA is a coupled partial differential equation, a significant nonlinear partial differential equation (PDE), arises in numerous branches of physical and mathematical sciences, like as fluid mechanics, quantum physics and plasma physics. Its complex nonlinear nature presents a substantial challenge in finding exact analytical solutions, leading researchers to explore innovative and efficient methods for resolution such as tanh method [1], extended auxiliary equation method [2,3,4], variational method [5], modified and extended simple equation method [6,7,8], direct algebraic method [9], generalized exponential rational function technique [10], extended F-expansion scheme [11,12], GG {}^{G}\!\!\diagup\!\!{}_{{{G}^{'}}}\; – expansion algorithm [13], sine-Gordon expansion method [14], modified sub-equation method [15], darboux method [16], homogeneous balance [17], and so on [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Among the abundance of mathematical tools available, the Jacobi elliptic function approach has emerged as a promising scheme for solving the non-linear partial differential equations (PDEs). This technique is particularly valuable in handling nonlinear equations with high nonlinearity, as it enables researchers to obtain exact solutions by transforming the original equation into a more manageable elliptic equation. In this research article, we focus on investigating the application of the Jacobi elliptic function approach to handle the Shynaray-IIA equation. The considered model is given as, iqt+qxti(vq)x=0,irtrxti(vr)x=0,vxn2α(rq)t=0. \matrix{ {{iq_t} + {q_{xt}} - i{{(vq)}_x} = 0,} \hfill \cr {{ir_t} - {r_{xt}} - i{{(vr)}_x} = 0,} \hfill \cr {{v_x} - {{{n^2}} \over \alpha }{{(rq)}_t} = 0.} \hfill \cr }

We aimed to construct exact analytical solutions that shed light on the intricate dynamics described by the equation. The obtained solutions not only contribute to a deeper understanding of underlying physical processes but also offer a valuable standard for validating numerical and approximate method in solving this challenging PDE. The Jacobi elliptic function expansion method serves as a powerful mathematical tool to solve the Shynaray-IIA (S-IIA) equation, allowing us to gain deeper insight into the behavior of complex physical systems. The exact analytical solutions obtained through this research contribute to the existing body of knowledge, paving the way for further advancement in the study of nonlinear Partial differential equations (PDEs) and their implications in diverse scientific disciplines. Sachin et al. [34,35,36,37,38] have examined the Konopelchenko–Dubrovsky (KD) equation, generalized complex coupled Schrödinger–Boussinesq equations, Sakovich equation, Zakharov–Kuznetsov–Benjamin–Bona–Mahony (ZK-BBM) equation and Vakhnenko-Parkes equation to develop the solitary wave solution and visualized their propagation by utilizing the distinct analytical techniques. Rani et al. [39] constructed exact analytical solutions for complex modified Kortewegde-Vries. Nonlaopon et al. [40] performed Painlevé analysis to form the exact soliton solutions.

The remainder of this article is presented in the following structure: Section 1, provides a brief overview of the Shynaray-IIA equation and its relevance in various scientific fields. Section II outlines the theoretical basis of considered method. In Section III, we present the step-by-step implementation of the method to obtain exact solutions for the Shynaray-IIA equation. In section IV, provide the analysis of graphs for direct study. Section V, discusses the conclusion and applicability of the proposed approach.

DESCRIPTION OF ANALYTICAL TECHNIQUE

An overview of the Jacobi elliptic function methodology is given in this section. We will use nonlinear partial differential equations, which typically have the following mathematical conclusion, Nu,ut,ux,2ut2,2ux2,=0. N\left( {u,{{\partial u} \over {\partial t}},{{\partial u} \over {\partial x}},{{{\partial ^2}u} \over {\partial {t^2}}},{{{\partial ^2}u} \over {\partial {x^2}}}, \ldots } \right) = 0.

Utilizing the following wave transformation to convert Eq. (1) into an ordinary differential equation, u=uξ,ξ=k(xct), u = u\left( \xi \right),\;\xi = k(x - ct), where the symbols for frequency and wave number, respectively, are c and k. Equation (1) has been successfully transformed into an ordinary differential equation (ODE) by the procedure described in Equation (2). .t=ckd.dξ,.x=kd.dξ, {{\partial \left( . \right)} \over {\partial t}} = - ck{{d\left( . \right)} \over {d\xi }},{{\partial \left( . \right)} \over {\partial x}} = k{{d\left( . \right)} \over {d\xi }}, Nu,u,u,.=0. N\left( {u',u'',u''', \ldots .} \right) = 0.

In conjunction with utilizing this advanced directed technique, the underlying principle entails augmenting the likelihood of resolving an auxiliary ODE, namely first-order Jacobian problem with the three parameters. This method aims to produce a multitude of Jacobian elliptic solutions for the given issue. Visualizing the auxiliary equation is a feasible step in understanding this process. (F)2ξ=PF4ξ+QF2ξ+R. {(F')^2}\left( \xi \right) = P{F^4}\left( \xi \right) + Q{F^2}\left( \xi \right) + R.

Let F=dFdξ F' = {{dF} \over {d\xi }} , where ξ = ξ(x, t), and the constants P, Q and R are involved. The solution for equation (5) is provided in Tab. 1. It is important to note that i2 = −1. Additionally, the Jacobi elliptic functions are denoted as snξ = sn(ξ, m), cnξ = cn(ξ, m), and dnξ = dn(ξ, m), where m lies in the range 0 < m < 1 and represents the modulus.

The chosen value of P, Q and R

P Q R F
1 m2 −(1 + m2) 1 sn, cd
2 −m2 2m2 − 1 1 − m2 cn
3 −1 2 − m2 m2 − 1 dn
4 1 −(1 + m2) m2 ns, dc
5 1 − m2 2m2 − 1 m2 nc
6 m2 − 1 2 − m2 −1 nd
7 1 − m2 2 − m2 1 sc
8 m2(1 − m2) 2m2 − 1 1 sd
9 1 2 − m2 1 − m2 cs
10 1 2m2 − 1 -m2(1 − m2) ds
11 14 {{ - 1} \over 4} m2+12 {{{m^2} + 1} \over 2} (1m2)24 {{ - {{(1 - {m^2})}^2}} \over 4} mcndn
12 14 {1 \over 4} 2m2+12 {{ - 2{m^2} + 1} \over 2} 14 {1 \over 4} nscs
13 1m24 {{1 - {m^2}} \over 4} m2+12 {{{m^2} + 1} \over 2} 1m24 {{1 - {m^2}} \over 4} ncsc
14 14 {1 \over 4} m222 {{{m^2} - 2} \over 2} m44 {{{m^4}} \over 4} nsns
15 m24 {{{m^2}} \over 4} m222 {{{m^2} - 2} \over 2} m24 {{{m^2}} \over 4} snicn,sn1m2sn sn \mp icn,{{sn} \over {\sqrt {1 - {m^2}sn} }}
16 14 {1 \over 4} 12m22 {{1 - 2{m^2}} \over 2} 14 {1 \over 4} mcnidn,sn1cn mcn \mp idn,{{sn} \over {1 \mp cn}}
17 m24 {{{m^2}} \over 4} m222 {{{m^2} - 2} \over 2} 14 {1 \over 4} sn1dn {{sn} \over {1 \mp dn}}
18 m214 {{{m^2} - 1} \over 4} m2+12 {{{m^2} + 1} \over 2} m214 {{{m^2} - 1} \over 4} dn1msn {{dn} \over {1 \mp msn}}
19 1m24 {{1 - {m^2}} \over 4} m2+12 {{{m^2} + 1} \over 2} m2+14 {{ - {m^2} + 1} \over 4} cn1sn {{cn} \over {1 \mp sn}}
20 (1m2)24 {{{{(1 - {m^2})}^2}} \over 4} m2+12 {{{m^2} + 1} \over 2} 14 {1 \over 4} sndncn {{sn} \over {dn \mp cn}}
21 m44 {{{m^4}} \over 4} m222 {{{m^2} - 2} \over 2} 14 {1 \over 4} cn1m2dn {{cn} \over {\sqrt {1 - {m^2} \mp dn} }}

The elliptic functions exhibit a distinctive double periodic, pro-cessing distinct properties as outline below: sn2ξ+cn2ξ=1,dn2ξ+m2sn2ξ=1,ddξsnξ=cnξdnξ,ddξcnξ=snξdnξ,ddξdnξ=m2snξcnξ. \matrix{ {{sn^2}\xi + c{n^2}\xi = 1,} \hfill \cr {{dn^2}\xi + {m^2}s{n^2}\xi = 1,} \hfill \cr {{d \over {d\xi }}sn\xi = cn\xi dn\xi ,} \hfill \cr {{d \over {d\xi }}cn\xi = - sn\xi dn\xi ,} \hfill \cr {{d \over {d\xi }}dn\xi = - {m^2}sn\xi cn\xi .} \hfill \cr }

With reference to Tab. 2, this reduction makes it possible to derive the solutions for the given problem using the trigonometric function and solitons. The Jacobi elliptic function expansion method can be used to describe the function as a finite series of Jacobi elliptic functions. uξ=i=1naiFiξ. u\left( \xi \right) = \mathop \sum \nolimits_{i = 1}^n \;{a_i}{F^i}\left( \xi \right).

Here the function F(ξ) represents solution to the non-linear ordinary equation denoted as Eq. 5. The constants n and ai (where i = 0, 1, 2, ... , n) are parameters that have to be found. The determination of the integer n in Eq. 6 involves an analysis of the highest order linear term. Odpudξp=n+p,p=0,1,2,3,, O\left( {{{{d^p}u} \over {{d\xi ^p}}}} \right) = n + p,\;\;\;p = 0,1,2,3,\; \ldots \; \ldots , thus, the most significant nonlinear terms at the highest order are Ouqdpudξp=q+1n+p,p=0,1,2,3,,q=1,2,3,, \matrix{ {O\left( {{u^q}{{{d^p}u} \over {{d\xi ^p}}}} \right) = \left( {q + 1} \right)n + p,\;\;\;p = 0,1,2,3,\; \ldots \; \ldots ,} \hfill \cr {q = 1,2,3,\; \ldots ,} \hfill \cr } in Eq. 4.

Analysis of Jacobi elliptic functions in the limit of m → 0 and m → 1.

m → 1 m → 0 m → 1 m → 0
1 snu tanhu sinu 7 dcu 1 secu
2 cnu sechu cosu 8 ncu coshu secu
3 dnu sechu 1 9 scu sinhu tanu
4 cdu 1 cosu 10 nsu cothu cscu
5 sdu sinhu sinu 11 dsu cschu cscu
6 ndu coshu 1 12 csu cschu cotu

Utilizing Eq. 6 and setting all coefficients of powers F to zero, we derive a set of nonlinear algebraic equations for the variables ai, (where i = 0,1,2,3, ….). Employing Mathematica, we proceed to solve this system of algebraic equations and put all the values for P, Q, and R as per Eq. 5 in Tab. 1. This approach, integrating the information from Eq. 6 with the selected auxiliary equation, allows for the determination of exact solutions for Eq. 1.

THE CONSTRUCTION OF SOLITONS OF SHYNARAY-IIA EQUATION (S-IIAE)

The precise solutions to Shynaray-IIA Eq. 1 using the Jacobi elliptic function expansion approach are shown in this section, iqt+qxti(vq)x=0,irtrxti(vr)x=0,vxn2α(rq)t=0. \matrix{ {{iq_t} + {q_{xt}} - i{{(vq)}_x} = 0,} \hfill \cr {{ir_t} - {r_{xt}} - i{{(vr)}_x} = 0,} \hfill \cr {{v_x} - {{{n^2}} \over \alpha }{{(rq)}_t} = 0.} \hfill \cr }

In case when = εq¯ε=±1 \varepsilon \bar q\left( {\varepsilon = \pm 1} \right) , the S-IIAE takes the following form: iqt+qxti(vq)x=0,vxn2εαq2t=0. \matrix{ {{iq_t} + {q_{xt}} - i{{(vq)}_x} = 0,} \hfill \cr {{v_x} - {{{n^2}\varepsilon } \over \alpha }{{\left( {{{\left| q \right|}^2}} \right)}_t} = 0.} \hfill \cr }

In the above equation m, n and ɛ are constants. By using the traveling wave transformation Eq. 11 is reduced into the following ODE: qx,t=Uηeiξ(x,t),vx,t=G(η),ξx,t=δx+ωt+θ,η=xct, \matrix{ {q\left( {x,t} \right) = U\left( \eta \right){e^{i\xi (x,t)}},v\left( {x,t} \right) = G(\eta ),} \hfill \cr {\xi \left( {x,t} \right) = - \delta x + \omega t + \theta ,\eta = x - ct,} \hfill \cr } where ν, θ, ω, δ characterize the frequency, the phase constant, the wave number and the velocity, respectively. The Eq. 27 is plugging into the first part of Eq. 26 and getting the real and imaginary parts, cUη+ω1δUη+δGηUη+i(ωc1δ)UηGηUηGηUη=0,Gη+2cεn2αUηUη=0. \matrix{ {cU''\left( \eta \right) + \omega \left( {1 - \delta } \right)U\left( \eta \right) + \delta G\left( \eta \right)U\left( \eta \right) + i(\omega \; - } \hfill \cr {c\left( {1 - \delta } \right))U'\left( \eta \right) - G\left( \eta \right)U'\left( \eta \right) - G'\left( \eta \right)U\left( \eta \right) = 0,} \hfill \cr {G'\left( \eta \right) + {{2c\varepsilon {n^2}} \over \alpha }U\left( \eta \right)U'\left( \eta \right) = 0.} \hfill \cr }

The second Eq. 28 is integrated, and we get Gη=cεn2αU2η. G\left( \eta \right) = - {{c\varepsilon {n^2}} \over \alpha }{U^2}\left( \eta \right).

Substitute the Eq. 13 into the first part of 12 and separating the real and imaginary parts as cUη+ω1δUηδcεn2αU3η=0. cU''\left( \eta \right) + \omega \left( {1 - \delta } \right)U\left( \eta \right) - {{\delta c\varepsilon {n^2}} \over \alpha }{U^3}\left( \eta \right) = 0.

And we have the imaginary part as, ωc1δUη+3cεn2αUηUη=0. \left( {\omega - c\left( {1 - \delta } \right)} \right)U'\left( \eta \right) + {{3c\varepsilon {n^2}} \over \alpha }U''\left( \eta \right)U'\left( \eta \right) = 0.

By using the homogeneous balancing procedure, we obtained n = 1, the determine value of n is substituted in Eg. 7 we obtained the simple form of the solution as: Uη=a0+a1F(η), U\left( \eta \right) = {a_0} + {a_1}F(\eta ), U3η=a03+a13F3η+3a0a12F2η+3a02a1F {U^3}\left( \eta \right) = a_0^3 + a_1^3{F^3}\left( \eta \right) + 3{a_0}a_1^2{F^2}\left( \eta \right) + 3a_0^2{a_1}F and Uη=a12PF3η+QFη. U''\left( \eta \right) = {a_1}\left( {2P{F^3}\left( \eta \right) + QF\left( \eta \right)} \right).

Substitute Eq. 16–18 into Eq. 15, we get, ca12PF3η+QFη+ω1δa0+a1Fηδcεn2αa03+a13F3η+3a0a12F2η+3a02a1Fη=0. \matrix{ {{ca_1}\left( {2{PF^3}\left( \eta \right) + QF\left( \eta \right)} \right) + \omega \left( {1 - \delta } \right)\left( {{a_0} + {a_1}F\left( \eta \right)} \right) - } \hfill \cr {{{\delta c\varepsilon {n^2}} \over \alpha }\left( {a_0^3 + a_1^3{F^3}\left( \eta \right) + 3{a_0}a_1^2{F^2}\left( \eta \right) + 3a_0^2{a_1}F\left( \eta \right)} \right) = 0.} \hfill \cr }

By collecting the various coefficients of Fi(η), we get the system of equations, U0:ω1δδcεn2αa02a0=0, {U^0}:\left( {\omega \left( {1 - \delta } \right) - {{\delta c\varepsilon {n^2}} \over \alpha }a_0^2} \right){a_0} = 0, U1:cQ+ω1δ3a02δcεn2αa1=0, {U^1}:\left( {cQ + \omega \left( {1 - \delta } \right) - 3a_0^2{{\delta c\varepsilon {n^2}} \over \alpha }} \right){a_1} = 0, U2:3a0a13δcεn2α=0, {U^2}: - 3{a_0}a_1^3{{\delta c\varepsilon {n^2}} \over \alpha } = 0, U3=2Pca12δcεn2αa1=0. {U^3} = \left( {2Pc - a_1^2{{\delta c\varepsilon {n^2}} \over \alpha }} \right){a_1} = 0.

Upon solving the aforementioned system by using Maple software, we obtain the coefficients pertaining to the series 16, a0=0,a1=±2αPδεn. {a_0} = 0,\;\;\;{a_1} = \pm {{\sqrt {{{2\alpha P} \over {\delta \varepsilon }}} } \over n}.

The obtained solution is of the form, U=±2αPδεnFη. U = \pm {{\sqrt {{{2\alpha P} \over {\delta \varepsilon }}} } \over n}F\left( \eta \right).

When the values P = m2, Q = −(1 + m2), and R = 1 are chosen, table 1 provides the corresponding values of F = sn. Therefore, the periodic solution of Equation 1 can be represented as, q1,1=±2αm2δεnsn(xct), {q_{1,1}} = \pm {{\sqrt {{{2\alpha {m^2}} \over {\delta \varepsilon }}} } \over n}sn(x - ct), v1,1=2cm2δsn2xct. {v_{1,1}} = - {{2c{m^2}} \over \delta }s{n^2}\left( {x - ct} \right).

Supposing m → 1, hence, by referring to table 2, one may derive the solitary wave solution of Eq. 1. q1,2=±2αδεntanh(xct), {q_{1,2}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}tanh(x - ct), v1,2=2cδtanh2xct. {v_{1,2}} = - {{2c} \over \delta }tan{h^2}\left( {x - ct} \right).

Choosing P = −m2, Q = 2m2 − 1, R = 1 − m2, based on the data supplied in Table 1, it can be inferred that the variable F can be mathematically expressed as F = cn. Consequently, the periodic solution of Equation (1) can be derived as follows: q1,3=±2αm2δεncn(xct), {q_{1,3}} = \pm {{\sqrt {{{ - 2\alpha {m^2}} \over {\delta \varepsilon }}} } \over n}cn(x - ct), v1,3=2cm2δcn2xct. {v_{1,3}} = {{2c{m^2}} \over \delta }c{n^2}\left( {x - ct} \right).

Considering m → 1 the solitary wave solution of Eq. 1 can be expressed as per the information provided in Tab. 2. q1,4=±2αδεnsech(xct), {q_{1,4}} = \pm {{\sqrt {{{ - 2\alpha } \over {\delta \varepsilon }}} } \over n}sech(x - ct), v1,4=2cδsech2xct. {v_{1,4}} = {{2c} \over \delta }sec{h^2}\left( {x - ct} \right).

Setting P = −1, Q = 2 − m2, R = m2 − 1, based on the data shown in Tab. 1, it can be inferred that the periodic solution of Eq. 1 can be mathematically represented as follows: q1,5=±2αδεndn(xct), {q_{1,5}} = \pm {{\sqrt {{{ - 2\alpha } \over {\delta \varepsilon }}} } \over n}dn(x - ct), v1,5=2cδdn2xct. {v_{1,5}} = {{2c} \over \delta }d{n^2}\left( {x - ct} \right).

In the context of m → 1 from Tab. 2, the similarity between the solution shown and the solution derived in Eq. 27 is clearly demonstrated.

While P = 1, Q = −(1 + m2), R = m2, F = ns, according to the data presented in Tab. 1, the answer to Eq. 1 can be represented as follows: q1,6=±2αδεnns(xct), {q_{1,6}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}ns(x - ct), v1,6=2cδns2xct. {v_{1,6}} = - {{2c} \over \delta }n{s^2}\left( {x - ct} \right).

Additionally, when m → 1 the solitary wave solution of Eq. 1 is presented in Tab. 2. q1,7=±2αδεncoth(xct), {q_{1,7}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}coth(x - ct), v1,7=2cδcoth2xct. {v_{1,7}} = - {{2c} \over \delta }cot{h^2}\left( {x - ct} \right).

Using Tab. 2, the periodic solution of Eq. 1 can be stated as follows if m → 0: q1,8=±2αδεncsc(xct), {q_{1,8}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}csc(x - ct), v1,8=2cδcsc2xct. {v_{1,8}} = - {{2c} \over \delta }cs{c^2}\left( {x - ct} \right).

Supposing P = 1, Q = −(1 + m2), R = m2.

Thus, F = dc, q1,8=±2αδεndc(xct), {q_{1,8}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}dc(x - ct), v1,8=2cδdc2xct. {v_{1,8}} = - {{2c} \over \delta }d{c^2}\left( {x - ct} \right).

Using Tab. 2, the periodic solution of Eq. 1 can be stated as follows if m → 0: q1,10=±2αδεnsec(xct), {q_{1,10}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}sec(x - ct), v1110=2cδscc2xct. {v_{{1_1}10}} = - {{2c} \over \delta }sc{c^2}\left( {x - ct} \right).

When P = 1 − m2, Q = 2m2 − 1, R = −m2. Thus, F = nc and the solution of periodic nature of Eq. 1 as: q1,11=±2α1m2δεnnc(xct), {q_{1,11}} = \pm {{\sqrt {{{2\alpha \left( {1 - {m^2}} \right)} \over {\delta \varepsilon }}} } \over n}nc(x - ct), v1,11=2c(1m)2δnc2xct. {v_{1,11}} = - {{2c{{(1 - m)}^2}} \over \delta }n{c^2}\left( {x - ct} \right).

As m → 0 from Tab. 2, it is shown that the solution found as that of 33.

Also regarding P = 1 − m2, Q = 2 − m2, R = 1.

Thus, F = sc: q1,12=±2α1m2δεnsc(xct), {q_{1,12}} = \pm {{\sqrt {{{2\alpha \left( {1 - {m^2}} \right)} \over {\delta \varepsilon }}} } \over n}sc(x - ct), v1,12=2c(1m)2δsc2xct. {v_{1,12}} = - {{2c{{(1 - m)}^2}} \over \delta }s{c^2}\left( {x - ct} \right).

Furthermore, we find the periodic solution of Eq. 1 as follows for m → 0, as shown in Tab. 2: q1,13=±2αδεntan(xct), {q_{1,13}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}tan(x - ct), v1,13=2cδtan2xct. {v_{1,13}} = - {{2c} \over \delta }ta{n^2}\left( {x - ct} \right).

Considering P = 1, Q = 2 − m2, R = 1 − m2 and F = cs, thus: q1,14=±2αδεncs(xct), {q_{1,14}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}cs(x - ct), v1,14=2cδcs2xct. {v_{1,14}} = - {{2c} \over \delta }c{s^2}\left( {x - ct} \right).

The solitary wave solution Eq. (1) is given as follows as m→1, per Tab. 2: q1,15=±2αδεncsch(xct), {q_{1,15}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}csch(x - ct), v1,15=2cδcsch2xct. {v_{1,15}} = - {{2c} \over \delta }csc{h^2}\left( {x - ct} \right).

The solitary wave solution Eq. 1 is given as follows as m→0, per Tab. 2, q1,16=±2αδεncot(xct), {q_{1,16}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}cot(x - ct), v1,16=2cδcot2xct. {v_{1,16}} = - {{2c} \over \delta }co{t^2}\left( {x - ct} \right).

Also assigning P = 1, Q = 2m2 − 1, R = m4m2 and F = ds. Thus, q1,17=±2αδεnds(xct), {q_{1,17}} = \pm {{\sqrt {{{2\alpha } \over {\delta \varepsilon }}} } \over n}ds(x - ct), v1,17=2cδdc2xct. {v_{1,17}} = - {{2c} \over \delta }d{c^2}\left( {x - ct} \right).

In this family, the soliton solution is the similar to Eq. 30. If the limit of m → 0, the solution can be articulated as per Eq. 38 with reference to Tab. 2.

Assuming P, Q, R as P=14 P = {{ - 1} \over 4} , Q=m2+12 Q = {{{m^2} + 1} \over 2} , R=1m24 R = {{ - \left( {1 - {m^2}} \right)} \over 4} , according to Tab. 1, F formulated as F = mcndn, the solution is determined as, q1,18=±α2δεnmcnxctdn(xct), {q_{1,18}} = \pm {{\sqrt {{{ - \alpha } \over {2\delta \varepsilon }}} } \over n}mcn\left( {x - ct} \right) \mp dn(x - ct), v1,18=c2δmcnxctdnxct2. {v_{1,18}} = {c \over {2\delta }}{\left( {mcn\left( {x - ct} \right) \mp dn\left( {x - ct} \right)} \right)^2}.

Additionally, when m → 1, the obtained solution is similar the solution found in Eq. (25).

If we select P, Q, R as P=14 P = {1 \over 4} , Q=2m2+12 Q = {{ - 2{m^2} + 1} \over 2} , R=14 R = {1 \over 4} , and evaluate F from table 1 where = nscs, thus solution of Eq. (1) can be indicated as, q1,19=±α2δεnnsxctcsxct, {q_{1,19}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}\left( {ns\left( {x - ct} \right) \mp cs\left( {x - ct} \right)} \right), v1,19=c2δnsxctcsxct2. {v_{1,19}} = - {c \over {2\delta }}{\left( {ns\left( {x - ct} \right) \mp cs\left( {x - ct} \right)} \right)^2}.

The solitary wave solution for m → 1 in Eq. 1 is identified as, q1,20=±α2δεncothxctcsch(xct), {q_{1,20}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}coth\left( {x - ct} \right) \mp csch(x - ct), v1,20=c2δcothxctcschxct2. {v_{1,20}} = - {c \over {2\delta }}{\left( {{\rm{coth\;}}\left( {x - ct} \right) \mp {\rm{csch}}\left( {x - ct} \right)} \right)^2}.

Additionally, in the case where m → 0, based on Tab. 2, obtaining a periodic solution is evident. q1,21=±α2δεncscxctcot(xct), {q_{1,21}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}csc\left( {x - ct} \right) \mp cot(x - ct), v1,21=c2δcscxctcotxct2. {v_{1,21}} = - {c \over {2\delta }}{\left( {{\rm{csc\;}}\left( {x - ct} \right) \mp {\rm{\;cot\;}}\left( {x - ct} \right)} \right)^2}.

If P=1m24 P = {{1 - {m^2}} \over 4} , Q=m2+12 Q = {{{m^2} + 1} \over 2} , R=1m24 R = {{1 - {m^2}} \over 4} and F = ncsc, the solution of Eq. (1) can be found as, q1,22=±α1m22δεnncxctscxct, {q_{1,22}} = \pm {{\sqrt {{{\alpha \left( {1 - {m^2}} \right)} \over {2\delta \varepsilon }}} } \over n}\left( {nc\left( {x - ct} \right) \mp sc\left( {x - ct} \right)} \right), v1,22=c1+m22δncxctscxct2. {v_{1,22}} = {{ - c\left( {1 + {m^2}} \right)} \over {2\delta }}{\left( {nc\left( {x - ct} \right) \mp sc\left( {x - ct} \right)} \right)^2}.

The solitary wave solution for m → 0 in Eq. 1 is identified as, q1,23=±α2δεnsecxcttanxct, {q_{1,23}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}\left( {sec\left( {x - ct} \right) \mp tan\left( {x - ct} \right)} \right), v1,23=c2δsecxcttanxct2. {v_{1,23}} = - {c \over {2\delta }}{\left( {{\rm{sec\;}}\left( {{\rm x} - {\rm ct}} \right) \mp {\rm{\;tan\;}}\left( {\rm {x - ct}} \right)} \right)^2}.

Setting P=m24 P = {{{m^2}} \over 4} , Q=m222 Q = {{{m^2} - 2} \over 2} , R=m24 R = {{{m^2}} \over 4} , as per Table 1, F = snicn, due to this setting the solution of Eq. 1 can be found as: q1,24=±αm22δεnsnxcticnxct, {q_{1,24}} = \pm {{\sqrt {{{\alpha {m^2}} \over {2\delta \varepsilon }}} } \over n}\left( {sn\left( {x - ct} \right) \mp icn\left( {x - ct} \right)} \right), v1,24=cm22δsnxcticnxct2. {v_{1,24}} = - {{{cm^2}} \over {2\delta }}{\left( {sn\left( {x - ct} \right) \mp icn\left( {x - ct} \right)} \right)^2}.

The solitary wave solution for m → 1 in Eq. (1) is identified as, q1,25=±α2δεntanhxctisechxct, {q_{1,25}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}\left( {tanh\left( {x - ct} \right) \mp isech\left( {x - ct} \right)} \right), v1,25=c2δtanhxctisechxct2. {v_{1,25}} = {{ - c} \over {2\delta }}{\left( {{\rm{tanh\;}}\left( {x - ct} \right) \mp isech\left( {x - ct} \right)} \right)^2}.

Regarding P=14 P = {1 \over 4} , Q=2m2+12 Q = {{ - 2{m^2} + 1} \over 2} , R=14 R = {1 \over 4} , and F = msnidn from the Table 1, thus, the solution of Eq. 1 can be expressed as, q1,26=±α2δεnmsnxctidnxct, {q_{1,26}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}\left( {msn\left( {x - ct} \right) \mp idn\left( {x - ct} \right)} \right), v1,26=c2δmsnxctidnxct2. {v_{1,26}} = {{ - c} \over {2\delta }}{\left( {msn\left( {x - ct} \right) \mp idn\left( {x - ct} \right)} \right)^2}.

For m → 1, the solution obtained as that of 48.

Considering P=14,Q=12m22,R=14, P = {1 \over 4},Q = {{1 - 2{m^2}} \over 2},R = {1 \over 4}, and F=sn1cn, F = {{sn} \over {1 \mp cn}}, from Tab. 1, thus, the solution of Eq. 1 can be found as, q1,27=±α2δεnsnxct1cnxct, {q_{1,27}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}{{sn\left( {x - ct} \right)} \over {1 \mp cn\left( {x - ct} \right)}}, v1,27=c2δsnxct1cnxct2. {v_{1,27}} = {{ - c} \over {2\delta }}{\left( {{{sn\left( {x - ct} \right)} \over {1 \mp cn\left( {x - ct} \right)}}} \right)^2}.

If we take a look at Tab. 2, we can determine the solitary wave solution of Eq. 1 for m → 1, q1,28=±α2δεntanhxct1sechxct, {q_{1,28}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}{{tanh \left( {x - ct} \right)} \over {1 \mp {\mathop{sech}\nolimits} \left( {x - ct} \right)}}, v1,28=c2δtanhxct1sechxct2. {v_{1,28}} = {{ - c} \over {2\delta }}{\left( {{{{\rm{\;tanh\;}}\left( {x - ct} \right)} \over {1 \mp {\rm{sech}}\left( {x - ct} \right)}}} \right)^2}.

If we take a look at Tab. 2, we can determine the solitary wave solution of Eq. 1 for m → 0, q1,29=±α2δεnsinxct1cosxct. {q_{1,29}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}{{sin\left( {x - ct} \right)} \over {1 \mp cos\left( {x - ct} \right)}}. v1,29=c2δsinxct1cosxct2. {v_{1,29}} = {{ - c} \over {2\delta }}{\left( {{{{\rm{\;sin\;}}\left( {x - ct} \right)} \over {1 \mp {\rm{\;cos\;}}\left( {x - ct} \right)}}} \right)^2}.

Supposing P=m24 P = {{{m^2}} \over 4} , Q=m222 Q = {{{m^2} - 2} \over 2} , R=14 R = {1 \over 4} it can be concluded from Tab. 1 F=sn1dn F = {{sn} \over {1 \mp dn}} , so the solution of Eq. 1 can be found as, q1,30=±αm22δεnsnxct1dnxct, {q_{1,30}} = \pm {{\sqrt {{{\alpha {m^2}} \over {2\delta \varepsilon }}} } \over n}{{sn\left( {x - ct} \right)} \over {1 \mp dn\left( {x - ct} \right)}}, v1,30=cm22δsnxct1dnxct2. {v_{1,30}} = - {{{cm^2}} \over {2\delta }}{\left( {{{sn\left( {x - ct} \right)} \over {1 \mp dn\left( {x - ct} \right)}}} \right)^2}.

When m → 1, the solution is determined by the solution in equation 52.

From Tab. 1, allocating P=1m24 P = {{1 - {m^2}} \over 4} , Q=m2+12 Q = {{{m^2} + 1} \over 2} , R=1m24 R = {{1 - {m^2}} \over 4} and F=cn1sn, F = {{cn} \over {1 \mp sn}}, thus, q1,31=±α1m22δεncnxct1snxct, {q_{1,31}} = \pm {{\sqrt {{{\alpha \left( {1 - {m^2}} \right)} \over {2\delta \varepsilon }}} } \over n}{{cn\left( {x - ct} \right)} \over {1 \mp sn\left( {x - ct} \right)}}, v1,31=c1+m22δcnxct1snxct2. {v_{1,31}} = {{ - c\left( {1 + {m^2}} \right)} \over {2\delta }}{\left( {{{cn\left( {x - ct} \right)} \over {1 \mp sn\left( {x - ct} \right)}}} \right)^2}.

If we take a look at Tab. 2, we can determine the solitary wave solution of Eq. 1 for m → 0, q1,32=±α2δεncosxct1sinxct, {q_{1,32}} = \pm {{\sqrt {{\alpha \over {2\delta \varepsilon }}} } \over n}{{cos\left( {x - ct} \right)} \over {1 \mp sin\left( {x - ct} \right)}}, v1,32=c2δcosxct1sinxct2. {v_{1,32}} = {{ - c} \over {2\delta }}{\left( {{{{\rm{\;cos\;}}\left( {x - ct} \right)} \over {1 \mp {\rm{\;sin\;}}\left( {x - ct} \right)}}} \right)^2}.

Choosing P=(1m2)24 P = {{{{(1 - {m^2})}^2}} \over 4} , Q=m2+12 Q = {{{m^2} + 1} \over 2} , R=14 R = {1 \over 4} and F=sndncn F = {{sn} \over {dn \mp cn}} , so that the solution of Eq. 1 can be obtained as, q1,33=±α(1m2)22δεnsnxctdnxctcnxct, {q_{1,33}} = \pm {{\sqrt {{{\alpha {{(1 - {m^2})}^2}} \over {2\delta \varepsilon }}} } \over n}{{sn\left( {x - ct} \right)} \over {dn\left( {x - ct} \right) \mp cn\left( {x - ct} \right)}}, v1,33=c(1+m2)22δsnxctdnxctcnxct2. {v_{1,33}} = {{ - c{{(1 + {m^2})}^2}} \over {2\delta }}{\left( {{{sn\left( {x - ct} \right)} \over {dn\left( {x - ct} \right) \mp cn\left( {x - ct} \right)}}} \right)^2}.

For m → 0, the solution is obtained as that of 51.

PHYSICAL EXPLANATIONS

This section offers physical explanation of Figure [1–12] and selection of wave solutions that have been obtained by applying the Jacobi elliptic function expansion method to the S-IIAE equation. In order to create visual representations of different soliton wave patterns, we have carefully selected and used certain parameter values. These patterns are illustrated in the accompanying figures. For every scenario, we have produced surface and contour visualization plots in two and three dimensions. These visual aids are important because they can verify that the theoretical conclusions, we came to earlier are accurate. It's important to keep in mind that these graphs and figures were produced using Mathematica. Consequently, one can notice that, the above-mentioned graphics are presenting the dark-bright, periodic, composite and bright soliton behavior respectively, under the influence of variation of wave number. On the other hand, the influence of wave is also discussed and noticed that, researchers and physicists can acquire their required results by controlling the propagation of soliton with wave number.

Fig. 1.

3-D, contour visualization and 2-D propagation of q1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.9, c = 0.1

Fig. 2.

3-D, contour visualization and 2-D propagation of q1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.9, c = 01

Fig. 3.

3-D, contour visualization and 2-D propagation of q1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.9, c = 2.5

Fig. 4.

3-D, contour visualization and 2-D propagation of ν1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.9, c = 0.1.

Fig. 5.

3-D, contour visualization and 2-D propagation of ν1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.9, c = 01

Fig. 6.

3-D, contour visualization and 2-D propagation of ν1,1 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.9, c = 2.5

Fig. 7.

3-D, contour visualization and 2-D propagation of q1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.5, c = 0.1

Fig. 8.

3-D, contour visualization and 2-D propagation of q1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.5, c = 01

Fig. 9.

3-D, contour visualization and 2-D propagation of q1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, m = 0.5, c = 2.5

Fig. 10.

3-D, contour visualization and 2-D propagation of ν1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.5, c = 0.1

Fig. 11.

3-D, contour visualization and 2-D propagation of ν1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.5, c = 01

Fig. 12.

3-D, contour visualization and 2-D propagation of ν1,2 for specific values of the parameters are ɛ = 1.2, α = 1.3, δ = 0.5, n = 1.5, c = −1.5, m = 0.5, c = 2.5

CONCLUSION

In conclusion, this research article explored the application of the Jacobi elliptic function expansion method for the Shynaray-IIA Equation (S-IIAE). The partial differential model is transformed into ordinary differential equation by employing the next travelling wave transformation according to considered analytical technique. Numerous properties of a particular class of solutions, called the Jacobi elliptic functions, make them useful for the analytical solution of a wide range of nonlinear problems. Using this powerful method, we derive a set of exact solutions for the Shynaray-IIA (S-IIA) equation, shedding light on its complex dynamics and behavior. The proposed method is shown to be highly effective in obtaining exact solutions in terms of Jacobi elliptic functions, such as dark, bright, periodic, dark-bright, dark-periodic, bright periodic, singular, and other various types of solitons. Additionally, a thorough examination of the accuracy and convergence of the obtained solutions is carried out. Overall, this research enriches the theoretical framework for the S-IIAE and presents a valuable tool for researchers and practitioners working in the field of nonlinear differential equations and mathematical physics.

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik