Uneingeschränkter Zugang

Thermal Performance of the Thermal Storage Energy with Phase Change Material


Zitieren

1. Tao YB, He Y-L. A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 2018; 93: 245–259. Search in Google Scholar

2. Farid MM, Khudhair AM, Siddique AK Razack, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Conversion and Management. 2004; 45:1597–1615.10.1016/j.enconman.2003.09.015 Search in Google Scholar

3. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009; 13: 318–345.10.1016/j.rser.2007.10.005 Search in Google Scholar

4. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews. 2010; 14: 615–628.10.1016/j.rser.2009.10.015 Search in Google Scholar

5. Kalnæs SE, Jelle BP. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings. 2015; 94: 150–176.10.1016/j.enbuild.2015.02.023 Search in Google Scholar

6. Chandel SS, Agarwal T. Review of current state of research on energy storage, toxicity, health, hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews. 2017; 67:581–596.10.1016/j.rser.2016.09.070 Search in Google Scholar

7. Ren Q, Guo P, Zhu J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. Int J Heat Mass Transf. 2020; 149:119199.10.1016/j.ijheatmasstransfer.2019.119199 Search in Google Scholar

8. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Progress in Materials Science. 2014; 65: 67–123.10.1016/j.pmatsci.2014.03.005 Search in Google Scholar

9. Douvi E, Pagkalos C, Dogkas G, Koukou MK, Stathopoulos VN, Caouris Y, Vrachopoulos MG. Phase change materials in solar domestic hot water systems: A review. International Journal of Thermofluids. 2021; 10:100075.10.1016/j.ijft.2021.100075 Search in Google Scholar

10. Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings. 2016; 129: 396-431.10.1016/j.enbuild.2016.04.006 Search in Google Scholar

11. Nair AM, Wilson C, Huang MJ, Griffiths P, Hewitt N. Phase change materials in building integrated space heating and domestic hot water applications: A review. Journal of Energy Storage. 2022; 54:105227.10.1016/j.est.2022.105227 Search in Google Scholar

12. Schaetzle WJ. Thermal energy storage in aquifers: design and applications. 1980; New York: Pergamon. Search in Google Scholar

13. Schmidt FW. Thermal energy storage and regeneration. 1981; New York: McGraw-Hill.10.1115/1.3266227 Search in Google Scholar

14. Naplocha K., et al. Effects of cellular metals on the performances and durability of composite heat storage systems. Int. J. Heat Mass Transf. 2017; 117:1214-1219. Search in Google Scholar

15. Libeer W, et al. Two-phase heat and mass transfer of phase change materials in thermal management systems. Int. J. Heat Mass Transf. 2016; 10: 215-223.10.1016/j.ijheatmasstransfer.2016.04.076 Search in Google Scholar

16. Pagkalos C, et al. Evaluation of water and paraffin PCM as storage media for use in thermal energy storage applications: a numerical approach. 2020; Int. J. Thermofluids 1–2.10.1016/j.ijft.2019.100006 Search in Google Scholar

17. Telkes M, Raymond E. Storing solar heat in chemicals—a report on the Dover house. Heat Vent. 1949; 46(11):80–86. Search in Google Scholar

18. Quenel J, Atakan B. Heat flux in latent thermal energy storage systems: the influence of fins, thermal conductivity and driving temperature difference. Heat Mass Transfer. 2022. https://doi.org/10.1007/s00231-022-03220-310.1007/s00231-022-03220-3 Search in Google Scholar

19. Yang X, Yu J, Xiao T, Hu Z, He Y-L. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam. Appl. Energy. 2020; 261:114385. Search in Google Scholar

20. Acir A, Canli ME. Investigation of Fin Application Effects on Melting Time in a Latent Thermal Energy Storage System with Phase Change Material (PCM). Applied Thermal Engineering. 2018.10.1016/j.applthermaleng.2018.09.013 Search in Google Scholar

21. Aramesh M, Shabani B. Metal foams application to enhance the thermal performance of phase change materials: A review of experimental studies to understand the mechanisms. Journal of Energy Storage. 2022; 50:104650.10.1016/j.est.2022.104650 Search in Google Scholar

22. Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage system. Renewable and Sustainable Energy Reviews. 2018; 93: 245–259.10.1016/j.rser.2018.05.028 Search in Google Scholar

23. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M. Nano-particles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering. Applied Thermal Engineering. 2020; 176:115305.10.1016/j.applthermaleng.2020.115305 Search in Google Scholar

24. Jianfeng WU, Yang ZHOU, Mengke SUN, Xiaohong XU, Kezhong TIAN, Jiaqi YU. Mechanical Properties and Microstructure of Al2O3/SiC Composite Ceramics for Solar Heat Absorber. Journal of Wuhan University of Technology-Mater. Sci. Ed.:615-623. Search in Google Scholar

25. Devaiah M, Comparison of Thermal Conductivity Experimental Results of SICP/AL2O3 Ceramic Matrix Composites with Mathematical Modeling. International Journal of Applied Engineering Research. 2018; 13(6): 3784-3788. Search in Google Scholar

26. DIN 51007 General principles of differential thermal analysis. Search in Google Scholar

27. ISO 11357-4 Plastics. Differential scanning calorimetry (DSC). Part 4: Determination of specific heat capacity. Search in Google Scholar

28. Ditmars DA, et al. Jour. Res. National Bureau of Standards. 1982; 87(2):159-163. Search in Google Scholar

29. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews. 2010; 14: 615–628.10.1016/j.rser.2009.10.015 Search in Google Scholar

30. Paris J, Falardeau M, Villeneuve C. Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources. 1993; 15: 85–93.10.1080/00908319308909014 Search in Google Scholar

31. ISO 11357-3 Plastics — Differential scanning calorimetry (DSC) — Part 3: Determination of temperature and enthalpy of melting and crystallization. Search in Google Scholar

32. Eysel W; Breuer KH. The calorimetric calibration of differential scanning calorimetry cells. Thermochim. Acta. 1982; 57(3): 317-329. Search in Google Scholar

33. Coleman HW, Steele WG. Experimentation, Validation, and Uncertainty Analysis for Engineers, third ed. John Wiley & Sons, Inc, 2009.10.1002/9780470485682 Search in Google Scholar

34. Evaluation of measurement data — Guide to the expression of uncertainty in measurement, GUM; 2008. Search in Google Scholar

35. KD2 Pro Thermal Properties Analyzer Operator’s Manual. Version 10. Decagon Devices. Inc.; 2011. Search in Google Scholar

36. Wang J, Xie H, Xin Z., Thermal properties of paraffin based composites containingmulti-walled carbon nanotubes, Thermochimica Acta. 2009; 488:39-42. Search in Google Scholar

37. Gulfam R, Zhang P, Meng Z. Advanced thermal systems driven by paraon-based phase change materials - A review. Applied Energy. 2019; 238: 582-611.10.1016/j.apenergy.2019.01.114 Search in Google Scholar

38. Gulfam R, Zhang P, Meng Z., Phase-Change Slippery Liquid-Infused Porous Surfaces with Thermo-Responsive Wetting and Shedding States. ACS Appl. Mater. Interfaces. 2020; 12: 34306−3431610.1021/acsami.0c0644132597163 Search in Google Scholar

39. Saydam V, Duan X. Dispersing Different Nanoparticles in Paraffin Wax as Enhanced Phase Change Materials – A Study on the Stability Issue. Journal of Thermal Analysis and Calorimetry volume. 2019; 135: 1135-1144.10.1007/s10973-018-7484-4 Search in Google Scholar

40. Lachheb M, Karkri M, Albouchi F, Ben Nasrallah S, Fois M, Sobolciak P.Thermal properties measurement and heat storage analysis of paraffin/graphite composite phase change material. Composites: Part B 66. 2014: 518–525.10.1016/j.compositesb.2014.05.011 Search in Google Scholar

41. de Vries DA. A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci. 1952; 73:83-9.10.1097/00010694-195202000-00001 Search in Google Scholar

42. D. Martin III Bradley, J. Putman, Nigel B.Kaye: Using image analysis to measure the porosity distribution of a porous pavement, Construction and Building Materials, Volume 48, November 2013, pp. 210-21710.1016/j.conbuildmat.2013.06.093 Search in Google Scholar

43. Image Processing and Analysis in Java-ImageJ. Available from: https://imagej.nih.gov/ij/index.html Search in Google Scholar

44. EN 623-2 Advanced technical ceramics. Monolithic ceramics. General and textural properties. Determination of density and porosity. Search in Google Scholar

45. IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. In: International Steam Tables. Springer. Berlin, Heidelberg. 2018. Search in Google Scholar

46. Sun X, Chu Y, Medina MA, Mo Y, Fan S, Liao S. Experimental investigations on the thermal behavior of phase change material (PCM) in ventilated slabs. Applied Thermal Engineering. 2014; Volume 148; 5:1359-1369.10.1016/j.applthermaleng.2018.12.032 Search in Google Scholar

47. Bałon P., Kiełbasa B., Kowalski Ł., Smusz R., Case Study on the In_ uence of Forming Parameters on Complex Shape Part Deformation, Advances in Science and Technology Research Journal 2022, 16(6):204–21310.12913/22998624/156464 Search in Google Scholar

48. Wilk J., Bałon P., Smusz R., Rejman E., Świątoniowski A., Kiełbasa B., Szostak J., Cieślik J., Kowalski Ł., Thermal Stratification in the Storage Tank, Procedia Manufacturing, 2020; 47:998–1003 Search in Google Scholar

eISSN:
2300-5319
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Elektronik, Maschinenbau, Mechanik, Bioingenieurwesen, Biomechanik, Bauingenieurwesen, Umwelttechnik