Zitieren

Abbaspour Gilandeh, Y., Jahanbakhshi, A. & Kaveh, M. (2019). Prediction kinetic, energy, and exergy of quince under hot air dryer using ANNs and ANFIS. Food Science and Nutrition, 8(1), 594-611. https://doi.org/10.1002/fsn3.1347. Search in Google Scholar

Abbaspour‐Gilandeh, Y., Kaveh, M. & Jahanbakhshi, A. (2019). The effect of microwave and convective dryer with ultrasound pre-treatment on drying and quality properties of walnut kernel. Journal of Food Processing and Preservation, 43(11), e14178. https://doi.org/10.1111/jfpp.14178. Search in Google Scholar

Abhishek, D., Ramakrishna, K. & Naveen, P. (2019). Experimental investigation and mathematical modeling of convective drying kinetics of white radish. Frontiers in Heat and Mass Transfer (FHMT), 13, pp. 21. http://dx.doi.org/10.5098/hmt.13.21. Search in Google Scholar

Abhishek, D., Tarun P., Ramakrishna, K. & Naveen, P. (2020). Convective hot air-drying kinetics of red beetroot in thin layers. Frontiers in Heat and Mass Transfer (FHMT), 14, 23. http://dx.doi.org/10.5098/hmt.14.23. Search in Google Scholar

Aboud, S. A., Altemimi, A. B., RS Al-HiIphy, A., Yi-Chen, L. & Cacciola, F. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules, 24(22), 4125. https://doi.org/10.3390/molecules24224125. Search in Google Scholar

Adesola, A. & Satimehin, A. (2014). Mathematical Model for Deep Bed Drying of Gelatinized White Yam (Dioscorea rotundata, Poir). International Journal of Energy Engineering, 4(2A), 33-39. https://doi.org/10.5923/j.ijee.201401.05. Search in Google Scholar

Altay, K., Hayaloglu, A.A. & Dirim, S.N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55, 2173–2184. https://doi.org/10.1007/s00231-019-02570-9. Search in Google Scholar

Bi, L., Liu, B., Yang, Z., Zou, T., Zhao, S. & Theodorakis, P.E. (2023). Analysis of heat and moisture transfer in the microwave drying of potatoes. Drying Technology, 41(9) 1397–1410. https://doi.org/10.1080/07373937.2022.2155972. Search in Google Scholar

Chauhan, P., Pathania, H., Shriya, S., Neetika, N., Nidhi, N., Sakshi, S., Kumar, A. (2022). Solar drying of herbal wealth in eastern Himalaya: a review. Frontiers in Heat and Mass Transfer (FHMT), 18, 34. https://doi.org/10.5098/hmt.18.34. Search in Google Scholar

Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Moustakas, K., Ludwig, W. & Kułażyński, M. (2021). Improvements in drying technologies - Efficient solutions for cleaner production with higher energy efficiency and reduced emission. Journal of Cleaner Production, 320, 128706. https://doi.org/10.1016/j.jclepro.2021.128706. Search in Google Scholar

Cui, P., Yu, Y., Xue, Q., Wu, Z., Miao, K., Liu, C. & Li, Z. (2023), Numerical simulation and optimization of Lonicerae Japonicae Flos extract spray drying process based on temperature field verification and deep reinforcement learning. Journal of Food Engineering, 345, 111425. https://doi.org/10.1016/j.jfoodeng.2023.111425. Search in Google Scholar

Edna Silva, G., Ricardo Gomez, S., Josivanda Gomes, P., Wilton Silva, P., Ketinlly Porto, Y.N., Fagno Rolim, D., João Carmo, E.F., Romário Andrade, O., Ivonete Santos, B., Rodrigo Sousa, A.A., Diego Diniz, D.S., Marcella Aragão, M.C.A. & Antonio Lima, G.B. (2021). Heat and Mass Transfer on the Microwave Drying of Rough Rice Grains: An Experimental Analysis. Agriculture, 11(1), 8. https://doi.org/10.3390/agriculture11010008 . Search in Google Scholar

Fasina, O., Tyler, B., Pickard, M., Zheng, G.H. & Wang, N. (2001). Effect of infrared heating on the properties of legume seeds. International Journal of Food Science and Technology, 36(1), 79-90. http://dx.doi.org/10.1046/j.1365-2621.2001.00420.x. Search in Google Scholar

Gasa, S., Sibanda, S., Workneh, T. S., Laing, M. & Kassim, A. (2022). Thin-layer modelling of sweet potato slices drying under naturally ventilated warm air by solar-venturi dryer. Food Science and Nutrition, 8(2), e08949. https://doi.org/10.1016/j.heliyon.2022.e08949. Search in Google Scholar

Hay, N. & Le Anh Duc, P. V. K. (2022). Mathematical Model of Radio Frequency Assisted Heat Pump Drying of Ganoderma Lucidum (Ganoderma Boninense). International Journal on Advanced Science, Engineering and Information Technology, 12(2), 726–731. https://doi.org/10.18517/ijaseit.12.2.9441. Search in Google Scholar

Huang, D., Yang, P., Tang, X., Luo, L. & Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777. https://doi.org/10.1016/j.tifs.2021.02.039. Search in Google Scholar

Kaveh, M., Sharabiani, V.R., Chayjan, R.A., Taghinezhad, E., Abbaspour Gilandeh, Y. & Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under a convective hot air dryer. Information Processing in Agriculture, 5, 372–387. https://doi.org/10.1016/j.inpa.2018.05.003. Search in Google Scholar

Kien, P., Duc, L. A. & Hay, N. (2022). Mathematical model of thin layer drying of ganoderma lucidum by radio frequency assisted heat pump drying. Frontiers in Heat and Mass Transfer (FHMT), 18(44), 1-7. http://dx.doi.org/10.5098/hmt.18.44. Search in Google Scholar

Kien, P., Tan, N., Son, D., Nguyen, N., Nguyen, N. & Duc, L. (2023). Heat and mass transfer in drying of carrot by radio frequency assisted heat pump drying. Frontiers in Heat and Mass Transfer (FHMT), 20, 25. http://dx.doi.org/10.5098/hmt.20.25. Search in Google Scholar

Li, L., Zhang, M. & Bhandari, B. (2019). Influence of drying methods on some physicochemical, functional and pasting properties of Chinese yam flour. LWT, 111, 182–189. https://doi.org/10.1016/j.lwt.2019.05.034. Search in Google Scholar

Liu, Z. L., Xie, L., Zielinska, M., Pan, Z., Deng, L. Z., Zhang, J. S., ... & Xiao, H. W. (2022). Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innovative Food Sciences & Emerging Technology, 77, 320-331. https://doi.org/10.1016/j.ifset.2022.102948. Search in Google Scholar

Liu, Z., Bia, J., Wang, S., Meng, J., Wang, H., Yu, X., Gao, Z. & Xiao, H. (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by an artificial neural network. Drying Technology, 38(15), 1959-1970. https://doi.org/10.1080/07373937.2019.1607873. Search in Google Scholar

Oke, M.O., Awonorin, S.O., Oyelade, O.J., Olajide, J.O., Olaniyan, G.O. & Sobukola, P.O. (2009). Some thermo-physical properties of yam cuts of two geometries. African Journal of Biotechnology, 8(7), 1300–1304. http://www.academicjournals.org/AJB. Search in Google Scholar

Okeke, C., Eje, B.E. & Eze, P.C. (2020). Drying Characteristics of Yam Varieties: A Comparative Analysis. Agricultural Engineering, 45(1), 20-37. http://dx.doi.org/10.5937/PoljTeh2001020O Search in Google Scholar

Okeleye, A.F., Akanbi, C.T. & Morakinyo, T.A. (2021). Modeling of Thin Layer Drying Characteristics of Blanch-Assisted Water Yam (Dioscorea Alata) Slices. Croatian Journal of Food Science and Technology, 13(1), 43-50. https://doi.org/10.17508/CJFST.2021.13.1.06. Search in Google Scholar

Olatoye, K.K. & Arueya, G.L. (2019). Nutrient and phytochemical composition of flour made from selected cultivars of aerial yam (Dioscorea bulbifera) in Nigeria. Journal of Food Composition and Analysis, 79, 23–27. https://doi.org/10.1016/j.jfca.2018.12.007. Search in Google Scholar

Omari, A., Behroozi Khazaei, N. & Sharifian, F. (2018). Drying kinetics and artificial neural network modeling of the mushroom drying process in a microwave-hot air dryer. Journal of Food Processing Engineering, 41(7), e12849. https://doi.org/10.1111/jfpe.12849. Search in Google Scholar

Ononogbo, C., Nwakuba, N.R., Nwaji, G.N., Nwufo, O.C., Nwosu, E.C., Okoronkwo, C.A., Igbokwe, J.O. & Anyanwu, E.E. (2022). Thermal efficiency and drying Behaviour of Yam slices in a dryer driven by the waste heat of exhaust gases. Scientific African, 17, e01310, 1-11. https://doi.org/10.1016/j.sciaf.2022.e01310. Search in Google Scholar

Onwude, D.I., Hashim, N., Abdan, K., Janius, R. & Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75–87. https://doi.org/10.1016/j.jfoodeng.2018.08.008. Search in Google Scholar

Qu, F., Zhu, X., Ai, Z, Ai, Y., Qiu, F. & Ni, D. (2019). Effect of different drying methods on the sensory quality and chemical components of black tea. LWT - Food Science and Technology, 99, 112–118. https://doi.org/10.1016/j.lwt.2018.09.036 Search in Google Scholar

Radojčin, M., Pavkov, I., Bursać Kovačević, D., Putnik, P., Wiktor, A., Stamenković, Z., & Gere, A. (2021). Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes, 9(1), 132. https://doi.org/10.3390/pr9010132. Search in Google Scholar

Sakai, N. & Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends in Food Science and Technology, 5(11), 357–362. https://doi.org/10.1016/0924-2244(94)90213-5. Search in Google Scholar

Salehi, F. & Kashaninejad, M. (2018). Mass transfer and color changes kinetics of infrared-vacuum drying of grapefruit slices. International Journal of Fruit Science, 18, 394-409. https://doi.org/10.1080/15538362.2018.1458266. Search in Google Scholar

Salehi, F. (2020). Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. International Journal of Fruit Science, 20(3), 586-602. https://doi.org/10.1080/15538362.2019.1616243. Search in Google Scholar

Salehi, F. (2021). Recent applications of heat pump dryer for drying of fruit crops: A Review. International Journal of Fruit Science, 21, 546–555. https://doi.org/10.1080/15538362.2021.1911746 Search in Google Scholar

Setyawan, N., Maninang, J. S., Suzuki, S. & Fujii, Y. (2021). Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods, 10(6), 1341. https://doi.org/10.3390/foods10061341. Search in Google Scholar

Sharma, K., Kaur, R., Kumar, S., Saini, R.K., Sharma, S., Pawde, S.V. & Kumar, V. (2023). Saponins: A concise review on food related aspects, applications and health implications. Food Chemistry Advances, 2, 100191. https://doi.org/10.1016/j.focha.2023.100191. Search in Google Scholar

Song, B., Tan, H. & Yang, J. (2020). Effect of three drying methods on the drying kinetics and quality of acerola cherry. Journal of Food Processing and Preservation, 44(9), e14674. https://doi.org/10.1111/jfpp.14674. Search in Google Scholar

Srikanth, K.S., Sharanagat, V.S., Kumar, Y., Bhadra, R., Singh, L., Nema, P.K. & Kumar, V. (2019). Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT - Food Science and Technology, 99, 8-16. https://doi.org/10.1016/j.lwt.2018.09.049. Search in Google Scholar

Sun, K.N., Liao, A.M., Zhang, F., Thakur, K., Zhang, J.G., Huang, J.H. & Wei, Z.J. (2019). Micro-structural, Textural, Sensory Properties and Quality of Wheat–Yam Composite Flour Noodles. Foods, 8(10), pp. 519. https://doi.org/10.3390/foods8100519. Search in Google Scholar

Thuwapanichayanan, R., Prachayawarakorn, S. & Soponronnarit, S. (2014), Heat and moisture transport behaviour and quality of chopped garlic undergoing different drying methods. Journal of Food Engineering, 136, 34-41. https://doi.org/10.1016/j.jfoodeng.2014.03.017. Search in Google Scholar

Turan, O. Y. & Firatligil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (Thymus vulgaris) leaves. Czech Journal of Food Sciences, 37(2), 128–134. https://doi.org/10.17221/243/2017-CJFS. Search in Google Scholar

Villalobos, M.C., Serradilla, M. J., Martín, A., Ruíz-Moyano, S., Casquete, R., Hernández, A. & Córdoba, M.G. (2019). Use of efficient drying methods to improve the safety and quality of dried fig. Journal of Food Processing and Preservation, 43(1), e13853. https://doi.org/10.1111/jfpp.13853. Search in Google Scholar

Waheed, M.A. & Komolafe, C.A. (2019). Temperatures dependent drying kinetics of cocoa beans varieties in air-ventilated oven. Frontier in Heat and Mass Transfer (FHMT), 12, 8. http://dx.doi.org/10.5098/hmt.12.8. Search in Google Scholar

Wu, X.F., Zhang, M. & Bhandari, B. (2019). A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militarist. Innovative Food Science and Emerging Technologies, 54(4), 34-42. http://dx.doi.org/10.1016/j.ifset.2019.03.003. Search in Google Scholar