Uneingeschränkter Zugang

Rationalisation of Austenite Transformation to Upper or Lower Bainite in Steels

   | 26. Juli 2014

Zitieren

1. Aaronson H.I., Reynolds W.T., Shiflet G.J.,Spanos G.: Bainite Viewed Three Different Ways. Metall. Trans. A 21A (1990), 1343-1380.10.1007/BF02672557Search in Google Scholar

2. Bhadeshia H.K.D.H.: Bainite in Steels, The Institute of Materials, London, 1992.Search in Google Scholar

3. Bradley J.R., Aaronson H.I.: Growth Kinetics of Grain Boundary Ferrite Allotriomorphs in Fe-CX Alloys. Metall. Trans. A 12A (1981), 729-1741.10.1007/BF02643755Search in Google Scholar

4. Spanos G et al.: Influence of Carbon Concentration and Reaction Temperature upon Bainite Morphology in Fe-C-2Pct Mn Alloys. Metall. Trans. A 21A (1990), 1391-1411.10.1007/BF02672559Search in Google Scholar

5. Goldstein H., Aaronson H.I.: Overall Reaction Kinetics and Morphology of Austenite Decomposition between the Upper Nose and the MS of a Hypoeutectoid Fe-C-Cr Alloy. Met. rans. A 21A (1990), 1465-1478.10.1007/BF02672562Search in Google Scholar

6. Shiflet G.J., Aaronson H.I.: Growth and Overall Transformation Kinetics above the Bay Temperature in Fe-C-Mo Alloys. Metall. Trans. A 21A (1990), 1413-1432.10.1007/BF02672560Search in Google Scholar

7. Aaronson H.I., Furuhara T., Hall M.G., Hirth J.P., Nie J.F., Purdy G.R., Reynolds Jr. W.T., On the mechanism of formation of diffusional plate-shaped transformation products. Acta Materialia 54 (2006), 1227-1232.Search in Google Scholar

8. Spanos G.: The Fine Structure and Formation Mechanism of Lower Bainite. Metall. mater. Trans. 25A (1994), 1967-1980.10.1007/BF02649045Search in Google Scholar

9. Vetters H.: Transformation of austenite into bainitic ferrite and martensite. Materials technology. 67 (1996), 408-411.10.1002/srin.199605511Search in Google Scholar

10. Honeycombe R.W.K.: Ferrite. Metal Sci. 6 (1980), 201-214.10.1179/030634580790426481Search in Google Scholar

11. Matas S.J., Hehemann R.F.: The Structure of Bainite in Hypoeutectoid Steels. Trans. TMSAIME 221 (1961), 179-185.Search in Google Scholar

12. Takahashi M., Bhadeshia H.K.D.H.: Model for transition from upper to lower bainite. Mater. Sci. echnol. 6 (1990), 592-603.Search in Google Scholar

13. Christian J.W.: Theory of Transformations in Metals and Alloys, 2nd edition, Pt.1, Pergamon Press, Oxford, 1975.Search in Google Scholar

14. Ławrynowicz Z.: Carbon Partitioning During Bainite Transformation in Low Alloy Steels. aterials Science and Technology 18 (2002), 1322-1324.10.1179/026708302225007259Search in Google Scholar

15. Ławrynowicz Z.: Bainite Morphology in Two Experimental Mn-V and Mo-Cr Steels, 13th International Symposium on Advanced Materials (ISAM-2013), Institute of Space Technology, Islamabad, Pakistan, 23 - 27 September, 2013, 13-75.Search in Google Scholar

16. Bhadeshia H.K.D.H.: Thermodynamic analysis of isothermal transformation diagrams. Metal Science 16 (1982), 159-165.10.1179/030634582790427217Search in Google Scholar

17. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering 12 (1999), 81-86.Search in Google Scholar

18. Bhadeshia H.K.D.H., David S.A., Vitek J.M., Reed R.W.: Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Materials Science and Technology 7 (1991), 686-698.Search in Google Scholar

19. Speer J.G., Streicher A.M., Matlock D.K., Rizzo F., Krauss G.: Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. [In:] Austenite formation and decomposition, E.B. Damm, M. Merwin (eds). Warrendale, PA: TMS/ISS (2003), 505-522.Search in Google Scholar

20. Speer J.G., Edmonds D.V., Rizzo F.C., Matlock D.K.: Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Current Opinion in Solid State & Materials Science 8 (2004), 219-237.10.1016/j.cossms.2004.09.003Search in Google Scholar

21. Bhadeshia H.K.D.H.: Application of first-order quasichemical theory to transformations in steels. et. Sci. 16 (1982), 167-169.10.1179/030634582790427244Search in Google Scholar

22. Bhadeshia H.K.D.H.: Diffusion of carbon in austenite. Met. Sci. 15 (1981), 477-479.10.1179/030634581790426525Search in Google Scholar

23. Bhadeshia H.K.D.H., Christian J.W.: Bainite in Steels, Metall. Trans. A 21A (1990), 767-797.10.1007/BF02656561Search in Google Scholar

24. Bhadeshia H.K.D.H., Edmonds D.V.: The Mechanism of Bainite Formation in Steels. Acta Metall. 28 (1980), 1265-1273.Search in Google Scholar

25. McLellan R.B., Dunn W.W.: J. Phys. Chem. Solids. 30 (1969), 2631.10.1016/0022-3697(69)90271-6Search in Google Scholar

26. Siller R.H., McLelan R.B.: The Variation with Composition of the Diffusivity of Carbon in Austenite. Trans. of TMS of AIME 245 (1969), 697-700.Search in Google Scholar

27. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metall. Trans. 1 (1970), 985-988.Search in Google Scholar

28. Dunn W.W., McLellan R.B.: The Application of a Quasichemical Solid Solution Model to Carbon Austenite. Metall. Trans. 1 (1970), 1263-1265.Search in Google Scholar

29. Trivedi R., Pound G.M.: The Effect of Concentration-Dependent Diffusion Coefficient on the Migration of Interphase Boundaries. J. Applied Physics 38 (1967), 3569-3576. Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien