This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://www.who.int/health-topics/tuberculosis#tab=tab_1; last access date May 19, 2025.Search in Google Scholar
Y. M. Jacobo-Delgado, A. Rodríguez-Carlos, C. J. Serrano and B. Rivas-Santiago, Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible?, Front. Immunol.14 (2023) Article ID 1194923 (18 pages); https://doi.org/10.3389/fimmu.2023.1194923Search in Google Scholar
S. S. R. Alsayed and H. Gunosewoyo, Tuberculosis: Pathogenesis, current treatment regimens and new drug targets, IJMS24(6) (2023) Article ID 5202 (23 pages); https://doi.org/10.3390/ijms24065202Search in Google Scholar
M. S. Prasad, R. P. Bhole, P. B. Khedekar and R. V. Chikhale, Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery, Bioorg. Chem.115 (2021) Article ID 105242; https://doi.org/10.1016/j.bioorg.2021.105242Search in Google Scholar
S. Lale Ngema, N. Dookie, R. Perumal, L. Nandlal, N. Naicker, M. Peter Letsoalo, M. O’Donnell, A. Khan, N. Padayatchi and K. Naidoo, Isoniazid resistance-conferring mutations are associated with highly variable phenotypic resistance, J. Clin. Tuberculosis Other Mycobacterial Dis.33 (2023) Article ID 100387 (6 pages); https://doi.org/10.1016/j.jctube.2023.100387Search in Google Scholar
S. K. Wahan, G. Bhargava, V. Chawla and P. A. Chawla, Unlocking InhA: Novel approaches to inhibit Mycobacterium tuberculosis, Bioorg. Chem.146 (2024) Article ID 107250; https://doi.org/10.1016/j.bioorg.2024.107250Search in Google Scholar
S. L. Parikh, G. Xiao and P. J. Tonge, Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid, Biochemistry39(26) (2000) 7645–7650; https://doi.org/10.1021/bi0008940Search in Google Scholar
M. R. Kuo, H. R. Morbidoni, D. Alland, S. F. Sneddon, B. B. Gourlie, M. M. Staveski, M. Leonard, J. S. Gregory, A. D. Janjigian, C. Yee, J. M. Musser, B. Kreiswirth, H. Iwamoto, R. Perozzo, W. R. Jacobs, J. C. Sacchettini and D. A. Fidock, Targeting tuberculosis and malaria through inhibition of enoyl reductase, J. Biol. Chem.278(23) (2003) 20851–20859; https://doi.org/10.1074/jbc.M211968200Search in Google Scholar
T. S. Ibrahim, E. S. Taher, E. Samir, A. M. Malebari, A. N. Khayyat, M. F. A. Mohamed, R. M. Bokhtia, M. A. AlAwadh, I. A. Seliem, H. Z. Asfour, N. A. Alhakamy, S. S. Panda and A. M. M. AL-Mahmoudy, In vitro antimycobacterial activity and physicochemical characterization of diaryl ether triclosan analogues as potential InhA reductase inhibitors, Molecules25(14) (2020) Article ID 3125 (18 pages); https://doi.org/10.3390/molecules25143125Search in Google Scholar
T. Armstrong, M. Lamont, A. Lanne, L. J. Alderwick and N. R. Thomas, Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives, Bioorg. Med. Chem.28 (2020) Article ID 115744; https://doi.org/10.1016/j.bmc.2020.115744Search in Google Scholar
F. Rodriguez, N. Saffon, J. C. Sammartino, G. Degiacomi, M. R. Pasca and C. Lherbet, First triclosan-based macrocyclic inhibitors of InhA enzyme, Bioorg. Chem.95 (2020) Article ID 103498; https://doi.org/10.1016/j.bioorg.2019.103498Search in Google Scholar
X. He, A. Alian and P. R. Ortiz De Montellano, Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides, Bioorg. Med. Chem.15 (2007) 6649–6658; https://doi.org/10.1016/j.bmc.2007.08.013Search in Google Scholar
A. Chollet, G. Mori, C. Menendez, F. Rodriguez, I. Fabing, M. R. Pasca, J. Madacki, J. Korduláková, P. Constant, A. Quémard, V. Bernardes-Génisson, C. Lherbet and M. Baltas, Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth, Eur. J. Med. Chem.101 (2015) 218–235; https://doi.org/10.1016/j.ejmech.2015.06.035Search in Google Scholar
U. H. Manjunatha, S. P. S. Rao, R. R. Kondreddi, C. G. Noble, L. R. Camacho, B. H. Tan, S. H. Ng, P. S. Ng, N. L. Ma, S. B. Lakshminarayana, M. Herve, S. W. Barnes, W. Yu, K. Kuhen, F. Blasco, D. Beer, J. R. Walker, P. J. Tonge, R. Glynne, P. W. Smith and T. T. Diagana, Direct inhibitors of InhA are active against Mycobacterium tuberculosis, Sci. Transl. Med.7(269) (2015) Article ID p.269ra3; https://doi.org/10.1126/scitranslmed.3010597Search in Google Scholar
F. Roquet-Banères, M. Alcaraz, C. Hamela, J. Abendroth, T. E. Edwards and L. Kremer, In vitro and in vivo efficacy of NITD-916 against Mycobacterium fortuitum, Antimicrob. Agents Chemother.67(4) (2023) e01607-22; https://doi.org/10.1128/aac.01607-22Search in Google Scholar
Y. Xia, Y. Zhou, D. S. Carter, M. B. McNeil, W. Choi, J. Halladay, P. W. Berry, W. Mao, V. Hernandez, T. O’Malley, A. Korkegian, B. Sunde, L. Flint, L. K. Woolhiser, M. S. Scherman, V. Gruppo, C. Hastings, G. T. Robertson, T. R. Ioerger, J. Sacchettini, P. J. Tonge, A. J. Lenaerts, T. Parish and M. R. K. Alley, Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA, Life Sci. Alliance1(3) (2018) e201800025; https://doi.org/10.26508/lsa.201800025Search in Google Scholar
P. S. Shirude, P. Madhavapeddi, M. Naik, K. Murugan, V. Shinde, R. Nandishaiah, J. Bhat, A. Kumar, S. Hameed, G. Holdgate, G. Davies, H. McMiken, N. Hegde, A. Ambady, J. Venkatraman, M. Panda, B. Bandodkar, V. K. Sambandamurthy and J. A. Read, Methyl-thiazoles: A novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis, J. Med. Chem.56 (21) (2013) 8533–8542; https://doi.org/10.1021/jm4012033Search in Google Scholar
M. Martínez-Hoyos, E. Perez-Herran, G. Gulten, L. Encinas, D. Álvarez-Gómez, E. Alvarez, S. Ferrer-Bazaga, A. García-Pérez, F. Ortega, I. Angulo-Barturen, J. Rullas-Trincado, D. Blanco Ruano, P. Torres, P. Castañeda, S. Huss, R. Fernández Menéndez, S. González Del Valle, L. Ballell, D. Barros, S. Modha, N. Dhar, F. Signorin-Gelo, J. D. McKinney, J. F. Garcia-Bustos, J. L. Lavandera, J. C. Sacchettini, M. Soledad Jimenez, N. Martin-Casabona, J. Castro-Pichel and A. Mendoza-Losana, Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor, eBioMed.8 (2016) 291–301; https://doi.org/10.1016/j.ebiom.2016.05.006Search in Google Scholar
R. Šink, I. Sosič, M. Živec, R. Fernandez-Menendez, S. Turk, S. Pajk, D. Alvarez-Gomez, E. M. Lopez-Roman, C. Gonzales-Cortez, J. Rullas-Triconado, I. Angulo-Barturen, D. Barros, L. Ballell-Pages, R. J. Young, L. Encinas and S. Gobec, Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis, J. Med. Chem.58(2) (2015) 613–624; https://doi.org/10.1021/jm501029rSearch in Google Scholar
L. Encinas, S.-Y. Li, J. Rullas-Trincado, R. Tasneen, S. Tyagi, H. Soni, A. Garcia-Perez, J. Lee, R. González Del Río, J. De Mercado, V. Sousa, I. Sosič, S. Gobec, A. Mendoza-Losana, P. J. Converse, K. Mdluli, N. Fotouhi, D. Barros-Aguirre and E. L. Nuermberger, Contribution of direct InhA inhibitors to novel drug regimens in a mouse model of tuberculosis, Antimicrob. Agents Chemother.68(11) (2024) e00357-24; https://doi.org/10.1128/aac.00357-24Search in Google Scholar
S. Pajk, M. Živec, R. Šink, I. Sosič, M. Neu, C. Chung, M. Martínez-Hoyos, E. Pérez-Herrán, D. Álvarez-Gómez, E. Álvarez-Ruíz, A. Mendoza-Losana, J. Castro-Pichel, D. Barros, L. Ballell-Pages, R. J. Young, M. A. Convery, L. Encinas and S. Gobec, New direct inhibitors of InhA with anti-mycobacterial activity based on a tetrahydropyran scaffold, Eur. J. Med. Chem.112 (2016) 252–257; https://doi.org/10.1016/j.ejmech.2016.02.008Search in Google Scholar
J. S. Freundlich, F. Wang, C. Vilchèze, G. Gulten, R. Langley, G. A. Schiehser, D. P. Jacobus, W. R. Jacobs and J. C. Sacchettini, Triclosan derivatives: Towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis, ChemMedChem4(2) (2009) 241–248; https://doi.org/10.1002/cmdc.200800261Search in Google Scholar
J. K. Barbay, W. Chai, W. Eccles, M. D. Hack, A. T. Herrmann, W. M. Jones, P. J. Krawczuk, K. D. Kreutter, A. D. Lebsack, D. J. Pippel, A. R. Rovira and R. L. Wolin, Small Molecule Inhibitors of NF-κB Inducing Kinase, WO 2020/239999 A1, 3 Dec 2020.Search in Google Scholar
J. Song, Y. Zhu, W. Zu, C. Duan, J. Xu, F. Jiang, X. Wang, S. Li, C. Liu, Q. Gao, H. Li, Y. Zhang, W. Tang, T. Lu and Y. Chen, The discovery of quinoline derivatives, as NF-κB inducing kinase (NIK) inhibitors with anti-inflammatory effects in vitro, low toxicities against T cell growth, Bioorg. Med. Chem.29 (2021) Article ID 115856; https://doi.org/10.1016/j.bmc.2020.115856Search in Google Scholar
M. Isomura, D. A. Petrone and E. M. Carreira, Coordination-induced stereocontrol over carbocations: Asymmetric reductive deoxygenation of racemic tertiary alcohols, J. Am. Chem. Soc.141(11) (2019) 4738–4748; https://doi.org/10.1021/jacs.9b00862Search in Google Scholar
M. R. Hall, M. Korb, S. A. Moggach and P. J. Low, Oxidative coupling of ruthenium alkenyl acetylide complexes as a route to dinuclear complexes featuring carbon-rich bridging ligands, Organometallics41(21) (2022) 2958–2973; https://doi.org/10.1021/acs.organomet.2c00402Search in Google Scholar
G. Castanedo, J. Feng, C. A. G. N. Montalbetti, S. Staben, Tricyclic Compounds and Methods of Use Therefor, WO 2013/120980 A1, 22 Aug 2013.Search in Google Scholar
S. M. Min, F. M. Bashore, J. L. Smith, T. M. Havener, S. Howell, H. Li, R. M. Couñago, K. I. Popov and A. D. Axtman, Development of a second-generation, in vivo chemical probe for PIKfyve, J. Med. Chem.68(3) (2025) 3282–3308; https://doi.org/10.1021/acs.jmedchem.4c02531Search in Google Scholar
L.-H. Chung, C.-F. Yeung, D.-L. Ma, C.-H. Leung and C.-Y. Wong, Metal-indolizine zwitterion complexes as a new class of organometallic material: A spectroscopic and theoretical investigation, Organometallics33(13) (2014) 3443–3452; https://doi.org/10.1021/om5003705Search in Google Scholar
X. Wang, Q. Chen, J. Zhou, Y. Hu, S. Ye and J. Wu, Electrochemical synthesis of alkenylsulfonates from alkynes, NaHSO3 and alcohols, Chin. J. Chem.43(3) (2025) 292–296; https://doi.org/10.1002/cjoc.202400962Search in Google Scholar
T. Zha, J. Rui, Z. Zhang, D. Zhang, Z. Yang, P. Yu, Y. Wang, F. Peng and Z. Shao, Direct catalytic asymmetric and regiodivergent N1- and C3-allenylic alkylation of indoles, Angew. Chem. Int. Ed.62(21) (2023) Article ID e202300844; https://doi.org/10.1002/anie.202300844Search in Google Scholar
G. S. Sontakke, A. K. Chaturvedi, D. Jana and C. M. R. Volla, Pyrazolidinone-aided Ru(II)-catalyzed regioselective C–H annulation with allenes, Org. Lett.26(21) (2024) 4480–4485; https://doi.org/10.1021/acs.orglett.4c01245Search in Google Scholar
L.-B. Han, Y. Ono and H. Yazawa, Nickel-catalyzed addition of P(O)−H bonds to propargyl alcohols: One-pot generation of phosphinoyl 1,3-butadienes, Org. Lett.7(14) (2005) 2909–2911; https://doi.org/10.1021/ol0508431Search in Google Scholar
M. R. Hall, S. A. Moggach and P. J. Low, Syntheses and structures of trans -bis(alkenylacetylide) ruthenium complexes, Chemistry An Asian Journal16(21) (2021) 3385–3403; https://doi.org/10.1002/asia.202100850Search in Google Scholar
Y.-T. Gu, D.-D. Chen, C.-B. Wang, Q. Cheng, J.-R. Han, X. Tian, S. Liu and W. Su, A mild and general trans-diboration of both terminal and internal propargyl alcohols, Org. Lett.26(49) (2024) 10499–10504; https://doi.org/10.1021/acs.orglett.4c03841Search in Google Scholar
Q. Tao, H. Zhang, R. Ye, Y. Zhang, Y. Long and X. Zhou, Palladium-catalyzed synthesis of β-alkynyl ketones via selective 1,3-alkynyl migration of α,α-disubstituted allylic alcohols, J. Org. Chem.89(18) (2024) 13208–13214; https://doi.org/10.1021/acs.joc.4c01332Search in Google Scholar
P. A. Baghurst and L. W. Nichol, The binding of organic phosphates to human methaemoglobin A. Perturbation of the polymerization of proteins by effectors, Biochim. Biophys. Acta412(1) (1975) 168–180; https://doi.org/10.1016/0005-2795(75)90349-9Search in Google Scholar
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, ıt OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallography42 (2009) 339–341; https://doi.org/10.1107/S0021889808042726Search in Google Scholar
A. Giuliani, The application of principal component analysis to drug discovery and biomedical data, Drug Discov. Today22(7) (2017) 1069–1076; https://doi.org/10.1016/j.drudis.2017.01.005Search in Google Scholar
C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Apll. Crystallography39 (2006) 453–457; https://doi.org/10.1107/S002188980600731XSearch in Google Scholar
N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminformatics3 (2011) Article ID 33 (14 pages); https://doi.org/10.1186/1758-2946-3-33Search in Google Scholar
R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem.47(7) (2004) 1739–1749; https://doi.org/10.1021/jm0306430Search in Google Scholar
J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin and M. Uchimaya, Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules, J. Comput. Aided Mol. Des.21 (2007) 681–691; https://doi.org/10.1007/s10822-007-9133-zSearch in Google Scholar
Y. Jiao, C. Cao and Z. Zhou, Direct synthesis of anti-1,3-diols through nonclassical reaction of aryl Grignard reagents with isopropenyl acetate, Org. Lett.13(2) (2011) 180–183; https://doi.org/10.1021/ol102520ySearch in Google Scholar
Y. Jiao, W. Zhao, S. Deng, Z. Tang, W. Liu, Y. Wan and F. Zhong, A one-pot diastereoselective synthesis of 1,3-diols and 1,3,5-triols via cascade reactions of arylalkynyl Grignard reagents with enol esters, J. Chem. Res.44(5-6) (2020) 255–266; https://doi.org/10.1177/1747519820908513